
Fingerprinting Tabletop Games
James Goodman

Game AI Research Group
Queen Mary University of London

james.goodman@qmul.ac.uk

Diego Perez-Liebana
Game AI Research Group

Queen Mary University of London
diego.perez@qmul.ac.uk

Simon Lucas
Game AI Research Group

Queen Mary University of London
simon.lucas@qmul.ac.uk

Abstract—We present some initial work on characterizing
games using a visual ‘fingerprint’ generated from several in-
dependent optimisation runs over the parameters used in Monte
Carlo Tree Search (MCTS). This ‘fingerprint’ provides a useful
tool to compare games, as well as highlighting the relative
sensitivity of a specific game to algorithmic variants of MCTS.
The exploratory work presented here shows that in some games
there is a major change in the optimal MCTS parameters when
we move from 2-players to 3 or 4-players.

Index Terms—Optimization, MCTS

I. INTRODUCTION

There are many approaches to defining a set of useful char-
acteristics to compare games, from quantitative measurement
of branching factors and states in a game tree, to qualitative
assessments of positional asymmetry, sensory feedback and
accessibility to spectators [1]. Here we present some initial
work on using the results of optimisation of Monte Carlo
Tree Search (MCTS) parameters to characterise a set of multi-
player tabletop games in the TAG framework [2].

The central idea is to run multiple independent optimisations
of MCTS parameters over a large search-space, and use the
marginal distribution over all optimisations of each parameter
as a means of characterising the game. This develops from
two common practices; one of reporting performance for
parameter settings across multiple games to show which games
benefit from the specific algorithmic variant being investigated;
a second of reporting a single set of optimised parameters
for a game. The approach generates a more ’distributional’
output visualised as bar charts that can be compared easily
by the human eye. It makes clear the relative importance of a
parameter to performance in a game in a way that reporting
a single optimal setting does not. If a setting is critical to
performance then there will be a sharp peak in the marginal
distribution as all optimization runs settle on that value; if a
setting is superfluous then the distribution will be flat as each
optimization run picks a value effectively at random.

The results are still undergoing detailed analysis, but one
immediately clear conclusion is that the fingerprint and best
parameter settings of a single game can sometimes change
radically as the number of players varies.

II. BACKGROUND

A. Tabletop Games Framework (TAG)

TAG is a recently developed framework for the implemen-
tation of modern Euro-style board and card-games [2]. These
games are of interest for research both because of their high
popularity, and because they often have high levels of hidden
information, stochasticity and interaction with more than two
players [3]. They contrast with 2-player, perfect information
classical games such as Chess or Go, which are well covered
in the Ludii project [4]. The games used are listed below, for
more detailed summaries see the TAG wiki1:

• Tic Tac Toe (c. 1850)
• Dots and Boxes (1889)
• Uno (1971)
• Diamant (2005)
• Dominion (2008)
• Love Letter (2012)
• Colt Express (2014)
• Virus (2015)
• Exploding Kittens (2015)

B. MCTS

Monte Carlo Tree Search (MCTS) [5]–[7] has been used
in many games. It is an anytime algorithm that uses a time
budget to search the forward game tree in four steps:

1) Selection. Select an action to take from the current state.
If all actions have been selected at least once then the
best one is picked using the Upper Confidence for Trees
equation [8]: J(a) = Q(a) + K

√
log(N)
n(a) The action

a with largest J(a) is selected. N is the total number
of visits to (iterations through) the state; n(a) is the
number of those visits that then took action a; Q(a) is the
mean score for all visits to the state that took action a;
K controls the trade-off between exploitation (choosing
high-valued actions) and exploration (actions with few
visits). This step is repeated down the tree of game states
until a state is reached with previously untried actions.

2) Expansion. Pick one of the untried actions uniformly at
random and add a new child state to the game tree.

3) Rollout. From the expanded state, take actions uniformly
at random for a number of steps (or the end of the game)
to obtain a final score.

1https://github.com/GAIGResearch/TabletopGames/wiki/Implemented-G
ames978-1-5386-5541-2/18/$31.00 ©2021 IEEE

20
21

 IE
EE

 C
on

fe
re

nc
e

on
 G

am
es

 (C
oG

) |
 9

78
-1

-6
65

4-
38

86
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CO
G5

26
21

.2
02

1.
96

19
08

9

Authorized licensed use limited to: Queen Mary University of London. Downloaded on September 08,2022 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

Parameter Values Description

Tree {UCB Standard UCT formula
Policy Alpha The AlphaGo formula

EXP3 Softmax Selection
RM} Regret Matching UCT

Opponent {MaxN Maximise their score
Tree Paranoid Minimise our score
Policy SelfOnly} Act randomly

Final {Robust Most visited action
Policy Simple} Most valuable action

TreeDepth {1, 3, 10, 30, 100} Max Depth of Tree

Rollout {0, 3, 10, 30, 100} Max actions per rollout

Redeterminise {false, true} Information Set MCTS

Open Loop {false, true} Use Forward model in tree

K {0.01, 0.1, 1, 10,
100}

Exploration coefficient for
UCB and Alpha

explore ε {0.01, 0.03, 0.1,
0.3}

Exploration chance for
EXP3 and Regret Matching

TABLE I: MCTS Parameters included in each Optimization
run and fingerprint. See main text for details on each.

4) Back-propagation. Propagate this score up the nodes
visited in this iteration. Each state records the mean score
of all iterations that take a given action from that state
(Q(a)), which will affect future Selection steps. Once the
time budget has been used the action at the root state with
either the highest score or most visits is executed.

The TAG games are multi-player games so we include a
number of variations to the core MCTS algorithm that may
help in this environment. The nine parameters we configure
to generate a fingerprint are summarized in Table I.

• Tree Policy. As well as the classic selection policy of the
UCT algorithm [8] we consider the variant used by [9],
which modifies the exploration term to

√
N/(1 + n(a)).

We also consider the EXP3 and Regret Matching (RM)
UCT policies described in [10] that have better theoretical
behaviour in adversarial environments.

• Opponent Tree Policy. We consider three variants to
model the opponent in the tree. ‘MaxN’ assumes that
each other player maximises their score and uses a single
tree to model all players; at each node the acting player’s
score is used to make a decision. This is the Multiplayer-
UCT of [11]. ‘Paranoid’ adapts this with all other players
modeled as reducing our score (in a 2-player game with
a Win/Lose reward this is identical to MaxN). ‘SelfOnly’
just models the agent’s own actions in the tree; it assumes
that the actions of other players do not matter, and makes
random decisions for them to advance the game state.

• Final Policy. This controls how a decision is made at the
root node after the search process is completed. ‘Robust’
picks the action with the most visits. ‘Simple’ picks the
action with the highest average value.

• Max Tree Depth. The maximum depth to which the tree
will be constructed before a rollout starts.

• Rollout Length. The maximum length of a rollout after
the tree phase. This many actions will be taken randomly
before the final state is evaluated (or the game ends).

• Redeterminise. If true then Information Set MCTS is
used [12]. This redeterminises the game state at the
start of each iteration of MCTS, reshuffling across all
possible sets of the hidden information. If false then
this defaults to Perfect Information MCTS, with a random
(valid) shuffling of the hidden information used for all
MCTS iterations. In the case of a genuinely perfect
information game, such as Dots and Boxes in our sample,
both settings should give identical behaviour apart from
any performance hit of redeterminisation.

• Open Loop. When true the forward model advances
the game state from the root through the tree on every
iteration. This allows the underlying state to be different
due on each node visit, due to a stochastic environment
or actions of other players outside in the tree [13]. When
false the forward model is not applied in the tree, and
each leaf stores the state that caused its expansion. This
approach reduces the number of forward model calls but
will perform less well if the game is not deterministic.

• K. The exploration weighting in the UCT formula.
• ε. K is not used in EXP3 and RM selection tree policies.

Instead a random action is taken with probability ε

C. NTBEA

The N-Tuple Bandit Evolutionary Algorithm (NTBEA) is
described in [14]. It has been benchmarked against other
optimisation algorithms in stochastic game environments and
proven to be more effective at finding a good set of parameter
settings than other algorithms within a fixed computational
budget [15]. Similarly [16] find NTBEA is the best optimiser
of MCTS parameters during algorithm execution for a number
of games. Given a parameter setting θ, NTBEA uses an N-
Tuple model to predict f(θ), the expected score if a game is
played using θ. In each iteration of NTBEA we:

1) Run one game using the current test setting θt. θ0 is
selected at random.

2) Update the N-Tuple Model with the evaluation result [14].
3) Generate X points by applying a mutation operator to θt.
4) Evaluate the Upper Confidence Bound (UCB) for each

of the X points using the N-Tuple Model. Select the one
with the highest UCB as θt+1, and repeat from 1.

In this study we set X=50, and the mutation operator randomly
mutates each θi to a random setting with probability 1

d .
After running a specified number of iterations, NTBEA

returns the θ with the best predicted score according to the
model. Previous work has shown that an NTBEA run is
effective at finding a good θ in a small number of trials with
a noisy utility function, but any individual NTBEA run may
get stuck in a local optimum [17]. This analysis recommends
splitting the computational budget into a number of separate
runs, and then using the single best result.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on September 08,2022 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Fingerprint for Love Letter against OSLA opponents.
Each box shows the marginal distribution of one parameter
over 30 NTBEA runs. Every run uses open loop, and all 4-
player runs recommend ‘SelfOnly’ as an opponent tree policy.

III. METHOD

We optimise MCTS agents to win against a fixed opponent
with a 40ms budget per decision. We repeat this for three
different opponents: random (RND), a one-step lookahead
(OSLA), and a simple MCTS agent with a 20ms time budget.
We use wall-time instead of the number of iterations or
forward model calls to avoid tilting the field towards short-
rollouts (favoured if we budget on forward model calls), or
towards open loop MCTS and long rollouts and tree-depth
(favoured if we budget on iterations, allowing any number
of forward model calls on each). Using a wall-time budget
means the optimisation process will automatically trade-off
the benefits of each under a common constraint. Experiments
are run on a 2.6 GHz Intel Xeon Gold 6240 CPU.

For each game we run 30 independent NTBEA runs, each
with 4,500 trials. The total search-space across the nine
parameters defined in Table I has 48,000 possible settings,
so only a small fraction of these will be tried in any run.
When optimising an N-player game, a single MCTS player
using the optimising parameters is placed at a random position
in each trial, and the remaining N-1 players use the same
fixed opponent (RND, OSLA or MCTS). For each of the 73
combinations of game, player count and opponent this gives
30 independently optimized parameters. We reduce this to a
fingerprint of nine marginal distributions, one per parameter,
displayed as a grid of barcharts, as shown in Figure 1.

IV. RESULTS

For reasons of space we show just a sample of the full
results here. The full results for all games, player counts and

Fig. 2: Fingerprint of Rollout length for all games and player
counts against simple MCTS opponents.

opponents can be browsed at https://gaigresearch.github.io/Tab
letopGames/site/GameFingerprints/NTBEAFingerprints.html.

Figure 1 shows the fingerprint of Love Letter against an
OSLA opponent for 2-4 players. This is interesting because
it shows a major change as we move to 3/4 players, for
which it is much more advantageous to allocate computational
budget to exploring ones own options while ignoring what the
other players might so in response (opponentTree=SelfOnly).
This pattern is also visible when facing a random or MCTS
opponent. Love Letter is a role-deduction game, in which the
hidden information is the role-card that each player has, and
the strong tilt towards open loop and information set MCTS
(redeterminisation=true) is hence as expected.

Figure 2 then shows the different patterns of a single MCTS
parameter across all games and player counts (in this case
against the simple MCTS opponent). We see that Dots and
Boxes favours short (or no) rollouts; and Colt Express favours
long rollouts. Colt Express is a ‘programming’ game, with
players first taking turns to play cards that will only later be
executed in order. This means that there is often a long gap
between a move and any reward from that more, and in this
situation longer rollouts are needed to ensure this reward is
back-propagated. Dots and Boxes in contrast has a much more
rapid feedback with a point gained as soon as a player encloses
a box, and long rollouts are not necessary. The optimisation
results show that here it is better to truncate rollouts and use
the available computational budget to run more iterations.

Like Love Letter in Figure 1, 2-player Uno is startlingly
different to Uno with more players, and this is a pattern evident
in Uno across other parameters too. Of all the games used, Uno
has the largest change as we move from 2 to 3 players.

Figure 3 shows all nine games with 2-players and a random

Authorized licensed use limited to: Queen Mary University of London. Downloaded on September 08,2022 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: All parameters for all 2-player games against random
opponents.

opponent. A general observation is that using a Simple final
action selection policy seems a better general choice than
the more usual Robust method. Otherwise this slicing of the
data highlights a few outliers; in particular Dots and Boxes
strongly favours a Regret Matching tree policy, while it and
Uno are the only games that do well with a zero rollout length.
Dots and Boxes is the only perfect information game, and the
2-player version is a direct zero-sum adversarial contest for
which Regret Matching has theoretical benefits.

V. DISCUSSION

This paper does not exhaustively analyse the results, but
picks out some interesting examples. This is work-in-progress,
and we need to evaluate how useful these game character-
izations are in applications. Can these fingerprints usefully
predict external game attributes (in terms of strategic depth
for example), or as the basis for an ensemble AI agent? The
method does not highlight interactions between parameters
given the 1-dimensional marginalisation, and 73 different
game settings (giving 657 combinations across 9 parameters)
means we must be careful of asserting statistical significance
of any one result. Despite this caveat the Love Letter shift to
a ‘Self-Only’ tree at 4-players in Figure 1, or the shift to zero
rollout length for 2-player Uno in Figure 2 are robust under
any correction for multiple tests.

We also need to check robustness to varying the optimisa-
tion approach, and computational budget. Using 40ms for each
decision allows 300-800 MCTS iterations per move, depending
on the game. We would expect the results to change as this is
increased, and investigating the relative sensitivity of different
games to computational budgets is future work.

VI. CONCLUSIONS

We have introduced a method for graphically ‘fingerprint-
ing’ games from multiple independent optimisations of algo-
rithmic parameters (here, MCTS), and applied this to nine
games for player counts between 2 and 4. This has shown
some cases where the fingerprint of a game changes quite
dramatically as we change the number of players, and also
in some cases where the opponent changes. Future work is to
extend this method to other algorithms, computational budgets,
and games, and construct a landscape of multi-player games.

ACKNOWLEDGMENT

This work was funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/S022325/1. Thanks
are due to Martin Balla, Alex Dockhorn, Raluca Gaina and
Raul Montoliu for contributing games to TAG.

REFERENCES

[1] G. S. Elias, R. Garfield, and K. R. Gutschera, Characteristics of games.
MIT Press, 2012.

[2] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana,
“TAG: A tabletop games framework,” in Proceedings of the AIIDE
workshop on Experimental AI in Games, 2020.

[3] S. Woods, Eurogames: The design, culture and play of modern European
board games. McFarland, 2012.

[4] M. Stephenson, E. Piette, D. J. Soemers, and C. Browne, “An overview
of the ludii general game system,” in 2019 IEEE Conference on Games
(CoG). IEEE, 2019, pp. 1–2.

[5] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in International conference on computers and games.
Springer, 2006, p. 72–83.

[6] G. Chaslot, S. De Jong, J.-T. Saito, and J. Uiterwijk, “Monte-carlo tree
search in production management problems,” in Proceedings of the 18th
BeNeLux Conference on Artificial Intelligence, 2006, p. 91–98.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, p. 1–43, Mar
2012.

[8] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, p. 282–293.

[9] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, and et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354–359, Oct 2017.

[10] V. Lisy, “Alternative selection functions for information set monte carlo
tree search,” Acta Polytechnica, vol. 54, no. 5, p. 333–340, 2014.

[11] N. Sturtevant, “An analysis of UCT in multi-player games,” ICGA
Journal, p. 14, 2008.

[12] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information set monte
carlo tree search,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 2, p. 120–143, Jun 2012.

[13] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and
S. Lucas, “Open loop search for general video game playing,” in
Proceedings of the 2015 on Genetic and Evolutionary Computation
Conference - GECCO ’15. ACM Press, 2015, p. 337–344. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2739480.2754811

[14] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The n-tuple bandit
evolutionary algorithm for game agent optimisation,” arXiv:1802.05991
[cs], Feb 2018, arXiv: 1802.05991. [Online]. Available: http:
//arxiv.org/abs/1802.05991

[15] S. Lucas, J. Liu, I. Bravi, R. Gaina, J. Woodward, V. Volz, and D. Perez-
Liebana, “Efficient evolutionary methods for game agent optimisation:
Model-based is best,” arXiv preprint arXiv:1901.00723, 2019.

[16] C. F. Sironi and M. H. Winands, “Comparing randomization strategies
for search-control parameters in monte-carlo tree search,” in 2019 IEEE
Conference on Games (CoG). IEEE, 2019, p. 1–8.

[17] J. Goodman and S. Lucas, “Weighting NTBEA for game AI optimisa-
tion,” arXiv preprint arXiv:2003.10378, 2020.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on September 08,2022 at 10:10:28 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T21:26:37-0400
	Preflight Ticket Signature

