
1

From Code to Play: Benchmarking Program Search
for Games Using Large Language Models

Manuel Eberhardinger, James Goodman, Alexander Dockhorn, Diego Perez-Liebana, Raluca D. Gaina, Duygu
Çakmak, Setareh Maghsudi, Simon Lucas

Abstract—Large language models (LLMs) have shown impres-
sive capabilities in generating program code, opening exciting
opportunities for applying program synthesis to games. In this
work, we explore the potential of LLMs to write usable code for a
wide range of gaming applications, focusing on two programming
languages, Python and Java. We use a hill-climbing algorithm,
where the mutations and seeds of the initial programs are
controlled by LLMs. For Python, the framework covers various
game-related tasks, including five miniature versions of Atari
games, ten levels of Baba is You, an environment inspired by
Asteroids, and a maze generation task. For Java, the framework
contains 12 games from the TAG tabletop games framework.
Across 29 tasks, we evaluated 11 language models for generating
Python and Java code. Our findings suggest that the performance
of LLMs depends more on the task than on model size. In addition,
the experiments show that running the hill-climbing algorithm
multiple times with fewer iterations is better than a single run
with more iterations.

Index Terms—Game AI, Large Language Models, Program
Synthesis

I. INTRODUCTION

Before the emergence of large language models (LLMs)
for code [1], program synthesis in imperative or object-
oriented languages like Python or Java was considered a highly
challenging task due to the combinatorial explosion of the
search space [2]. Therefore, most solvable tasks were restricted
to simple problem domains such as string manipulation or list
sorting, typically implemented within a predefined domain-
specific language (DSL) [3]. Similarly, program synthesis
for games was limited to simple problems with well-defined
search spaces, achievable only by incorporating high-level
game-specific concepts into the DSL [4], [5], [6], [7].

The goal of program synthesis is the automatic generation
of programs that satisfy certain requirements, such as input-
output examples (e.g. five pairs of unsorted lists and their
sorted counterparts), natural language descriptions of the
program to be generated or formal specifications such as logical
constraints [2]. Automatic construction of programs for high-
level programming languages in game research has hardly

Manuel Eberhardinger is with the Institute of Applied AI, Stuttgart Media
University, Nobelstr. 10, 70569 Stuttgart, Germany (Corresponding Author;
email: eberhardinger@hdm-stuttgart.de)

James Goodman, Diego Perez-Liebana, Raluca D. Gaina and Simon Lucas
are with the School of Electronic Engineering and Computer Science, Queen
Mary University of London, E1 4NS London, U.K.

Alexander Dockhorn is with the SDU Metaverse Lab, University of Southern
Denmark, Campusvej 55, DK-5230 Odense

Duygu Çakmak is with Creative Assembly, RH12 1JW Horsham, U.K.
Setareh Maghsudi is with the Chair of Learning Technical Systems, Ruhr-

University Bochum, Universitätsstr. 150, 44801 Bochum, Germany

OpenAI




GPT4o
GPT4o-mini


o1-mini

Claude 3.5



Haiku

Sonnet

Llama


3.1 70B

3.3 70B


Google




Gemini 2.0 Flash-Lite

Gemini 2.0 Flash

Mistral AI




Mistral Small

Mistral Large

LLM Providers Program Search

Main Process










Prompt Generation or Update

1. Prompt

2. Function

Subprocess with Timeout










Evaluation on specific Task

5. Result3. Code 

Injection

Tabletop Games














Atari

Breakout
Asterix


Space Invader

Freeway

Seaquest

Baba is You


Level 1 - 10

Vehicle Driving



Asteroids

Maze Generation

Domains

Can't Stop Love Letter
Colt Express Poker
Connect 4 Seven Wonders
Diamant Sushi Go!
Dominion Tic-Tac-Toe

Hearts Virus

4. Execute 

Program

Fig. 1: The general framework for program search begins by
generating an initial task prompt (1), which is processed by one
of the integrated LLMs to produce a function (2). This function
is then evaluated within a subprocess (3), which executes the
program in the given task (4) and then the results are reported
back to the main process (5). The main process updates the
prompt based on the evaluation outcomes and either returns it
to the LLM (repeat from 1) for further refinement or concludes
if the evaluation criteria are reached.

been explored. Most discussions merely outlined its potential
applications [8], or focused on the missing aspects of automated
game development systems to move from game description
languages to programming languages [9].

Recently, methods for LLM-based program search have
been introduced for the automatic design of playable games
based on program code [10], [11], [12] and to generate game
content through JSON representations [13]. LLMs have also
been adapted to synthesize programmatic policies in Python,
which are then converted into a DSL suitable for the target
environment [14], as well as to construct world models in
Python that approximate reward and state transition functions
for simple games, enabling action plan generation [15].

In this work, we explore the potential of LLM-based program
search for a wider range of games without depending on a



2

predefined JSON converter [13] or on predefined specifications
such as a DSL (e.g., Ludii [10], the video game description
language [11], or Karel [14]). Our aim is to enable LLMs to
synthesize program code that can be used directly, without
requiring additional transformations or prior specifications. We
evaluate this approach across different domains using two
programming languages: Python and Java. In Python, we focus
on synthesizing programmatic agent policies and functions for
procedural content generation (PCG). In Java, the method is
integrated into TAG, a tabletop games framework, in which
LLMs design heuristics for board games [16].

Our goal is not to propose a new method for program
synthesis, but to introduce an easy-to-use and extensible
framework to evaluate the current performance of LLMs for
the synthesis of game-related program code. To achieve this,
we have integrated five different LLM providers with a total
of 11 different models. For the synthesis of Python code, the
framework consists of five miniature versions of Atari games
where the input is represented symbolically [17], ten levels of
the game Baba is You, in which various game mechanics are
tested [18], a vehicle driving environment based on the game
Asteroids, and procedural content generation in the form of
mazes. For Java, the framework consists of 12 tabletop games
of the TAG framework [16]. In total, we evaluate the LLMs
on 29 different tasks. An overview of our proposed framework,
as well as games and LLMs used, is shown in Figure 1.

Our contributions are:

• We perform an empirical study to evaluate the current
state-of-the-art of LLM-based program search for games.

• We introduce an easy-to-use and extensible framework
with 29 tasks that evaluate various aspects of game
mechanics.

• We open-source our code upon publication. Currently, only
the example prompts for the experiments are available in
the repository1.

The structure of the paper is as follows: We review related
work on program synthesis for games in Section II. Afterwards,
the framework is introduced in Section III, followed by a short
summary of the LLMs used in Section IV. Section V first
describes the experimental setup (Section V-A) and then the
experiments for the game applications, starting with miniature
versions of the Atari games, followed by the Asteriods-inspired
vehicle driving experiments. Then we discuss the puzzle game
Baba is You is and the maze generation experiments. We
conclude the first part of the experiments with an overall
evaluation of the generated Python code. The second part of
the experiments, starting in Section V-G, focuses on the TAG
framework which uses Java as the programming language.
In addition to the standardised experiments, longer-running
experiments that evaluate the impact on the number of iterations
for the five games in the Atari domain are reported in
Section VI. Finally, we discuss practical insights gained from
the experiments in Section VII, and conclude the paper in
Section VIII.

1https://github.com/ManuelEberhardinger/Benchmarking-Language-Model-
Based-Program-Search-for-Games

II. RELATED WORK

There are a considerable number of studies that use program
synthesis approaches for games. Butler et al. used SMT-solvers
to search for programs within a Lisp-based DSL, enabling
the generation of diverse boss fights in Megaman [4] and
puzzles for the game Nonograms [5]. In [6], a method was
introduced for learning combinations of logical programs to
solve simple grid-based games like Nim. Cropper et al. [19],
[20], [21] developed a comprehensive benchmark of 50 games
to recover game rules from gameplay traces using inductive
logic programming (ILP). Furthermore, Evans et al. [22]
applied a differentiable form of ILP to learn interpretable rules
for Sokoban. Recently, a method for learning programmatic
policies for zero-shot coordination problems in cooperative
tasks was introduced and demonstrated in the game Overcooked
[23]. In contrast to learning programmatic policies, there is
also work focusing on using program synthesis to explain the
decision-making process of game-playing agents [24].

Mariño et al. [7] utilized program search to develop strategies
for the game MicroRTS, comparing the resulting programmatic
policies with those created by human developers. Their findings
demonstrated that the synthesized programs performed compa-
rably to those written by humans. Subsequent research built
on this foundation by introducing improved search techniques,
including bilevel search [25], by guiding the program search
[26] or by searching in semantic spaces [27]. Recently, an
approach for combining LLMs with local search algorithms was
proposed for MicroRTS [28], where the authors showed that
providing initial programs with LLMs found better solutions
faster and improved the performance of the final programs.

In [29], Genetic Programming (GP) is used to search for
evaluation functions within a predefined DSL for the board
game 7 Wonders. Similarly, Sturtevant and White generate
evaluation functions automatically by using reinforcement
learning to learn more complex features by combining atomic
features for the game Hearts [30]. This approach resembles
our experiments with the TAG framework, where heuristic
functions are synthesized; however, we use Java without relying
on predefined concepts. GP has also been applied to generate
game agents for various scenarios, including a fighting game
[31], a platformer game [32], a puzzle game [33], and to
create explanations for a maze runner agent [34]. Additionally,
Wilson et al. [35] used Cartesian GP to develop programs for
Atari games, processing pixel observations through predefined
mathematical, statistical, or list functions.

A recent approach from cognitive science, known as
language-informed thinking [36], combines large language
models (LLMs) with Bayesian inference. This method enables
LLMs to pose questions in natural language, which are then
translated into a language of thought [37] represented as a
probabilistic programming language. Grand et al. extended
this approach to the board game Battleship, demonstrating that
the questions generated by LLMs aligned closely with the
performance of human players [38].

Verma et al. [39], [40] employed neurosymbolic methods
to synthesize programmatic policies for a car racing game,
demonstrating that these programs were more robust than



3

neural network policies while achieving comparable rewards.
While this approach shares similarities with the vehicle driving
experiments in our work, it is more constrained, as the search
space is limited to the provided DSL and our vehicle driving
problem requires a planning algorithm to be solvable.

In [41], a reactive programming language with a novel
program synthesis algorithm is introduced to discover causal
structures represented as state machines in combination with
program code. They evaluate the proposed method for 2D grid
games similar to Super Mario.

Voyager [42] is a lifelong learning agent for the Minecraft
environment that uses an LLM to synthesize code in the
Mineflayer API2, which is then executable to obtain the actions.
In addition, a second LLM is used as a high-level planner to
create a task curriculum for the agent. Moreover, Ma et al. [43]
proposed an evolutionary approach using LLMs to synthesize
reward functions for complex control tasks, achieving superior
performance compared to human-engineered reward functions.

The key distinction between our work and the discussed
literature is the use of high-level programming languages
(Python and Java), making our approach applicable to a broader
range of tasks without relying on predefined building blocks or
a programming library. The work that is most similar to ours
and is also used for game environments is [15], where Python
code is synthesized to approximate a world model. However,
this work is limited to a single, different type of task.

III. FRAMEWORK

The general framework we propose is based on a hill-
climbing algorithm where the mutations and the seed of the
initial program are performed by an LLM based on evolutionary
approaches using LLMs [44], [45]. Thus, our framework
belongs to the group of neurosymbolic programming methods
[46], as we use an LLM to generate programs that are checked
for correctness and functionality by symbolic verifiers, in our
case the Python interpreter and Java compiler. The overview of
the framework is illustrated in Figure 1, which shows the high-
level interaction between the different modules and processes.
Synthesized program code by LLMs is always executed within
a safe subprocess environment, ensuring that the main process
can terminate it after a certain time limit to prevent infinite
execution of the program.

A detailed description of the complete algorithm is provided
in Algorithm 2. Our framework consists of two iterative
processes that control the length of the search, defined by
the input parameter iterations, as well as the number
of attempts to repair the program in each iteration defined
by the input parameter maxAttempts. Each iteration starts
by generating or updating a task prompt to obtain an initial
Python or Java function from Algorithm 1. The procedure of
Algorithm 1 queries the LLM and tries to fix compilation
or syntax errors for the given number of maxAttempts.
The program code is then returned to Algorithm 2 and is
injected and executed in a subprocess. If the function is
executed successfully and returns an improved reward, we
update the prompt with the achieved evaluation metric and

2https://github.com/PrismarineJS/mineflayer/tree/master

all relevant environment-specific details, such as the action
trace of the executed function. If a runtime error occurs, the
error description is included in the prompt for refinement of
the program, so that it is possible for the LLM to fix these
errors in the next iteration. These steps are repeated iteratively
until the evaluation criteria defined by the fitness function are
satisfied or the specified number of iterations is reached.

We explain the domain-specific adaptations of the framework
in the respective chapters in section V. While the overall
framework is similar for all tasks, domain-specific adaptations
are necessary, such as the description of the environment or
the game logic, as well as the objective of the game.

Algorithm 1 The algorithm for querying an LLM with the
number of attempts to generate/update or repair the program.

1: procedure QUERYLLMWITHREPAIR(prompt, maxAt-
tempts)

2: program ← QUERYLLM(prompt)
3: j ← 1
4: while j < maxAttempts and not CanExec(program)

do
5: prompt ← GETREPAIRPROMPT(program)
6: program ← QUERYLLM(prompt)
7: j ← j + 1
8: end while
9: return program

10: end procedure

Algorithm 2 The algorithm for our proposed framework, which
uses the procedure from Algorithm 1 in each iteration to
improve or generate a program.

1: procedure PROGRAMSEARCH(task, iterations, maxAt-
tempts)

2: bestFitness ← 0
3: i← 0
4: bestProgram ← NULL
5: repeat
6: if bestProgram != NULL then
7: prompt ← UPDATETASKPROMPT(task, bestRe-

sult, bestFitness, bestProgram)
8: else
9: prompt ← GETTASKPROMPT(task)

10: end if
11: program ← QUERYLLMWITHREPAIR(prompt,

maxAttempts)
12: result ← INJECTANDRUNCODE(task, program)
13: fitness ← EVALUATEFITNESS(task, result)
14: if fitness > bestFitness then
15: bestProgram ← program
16: bestResult ← result
17: bestFitness ← fitness
18: end if
19: i← i+ 1
20: until CHECKCRITERION(fitness) or i == iterations
21: return program
22: end procedure



4

TABLE I: The used LLMs with the specific version or date of
the release.

LLM Release Date

Claude 3.5 Sonnet 2024-10-22
Claude 3.5 Haiku 2024-10-22

Gemini 2.0 Flash 2025-02
Gemini 2.0 Flash-Lite 2025-02

Mistral Large 2024-11
Mistral Small 2025-03

o1-mini 2024-09-12
GPT 4o 2024-08-06
GPT 4o mini 2024-07-18

Llama 3.3 70B 2024-12-06
Llama 3.1 70B 2024-07-23

IV. LARGE LANGUAGE MODELS

For our benchmark, we integrated five LLM providers for
generating Python and Java code in our framework, using one
smaller and one larger version for each model type. From
OpenAI, we utilize models from the GPT-4o family3, based on
GPT-4 [47]. For the new ChatGPT models in the o1 generation,
we use o1-mini, which offers performance comparable to o1-
preview for coding tasks.4 We also incorporate the latest models
from Mistral5, Claude 3.56 from Anthropic, based on Claude
3 [48], and the 2.0 Gemini Flash models7 [49], provided by
Google, for both programming languages. Two open source
models from the Llama family are used, Llama 3.1 70B [50]
and Llama 3.3 70B, which performs similarly to Llama 3.1
405B for code-related tasks.8 Details on the model versions
and their release dates are in Table I.

V. GAME APPLICATIONS

In the following section, we first describe the experimental
setup, followed by the experiments that were conducted for
each of our target domains.

A. Experimental Setup

In general, the experiments reported run 10 independent
trials of Algorithm 2, and the final recommendation is the
best performing agent from these 10 trials. In each trial, 10
iterations of search were performed, with 3 queries used to
create/improve or repair the policy.

B. Programmatic Policies: Minatar

Minatar [17] is a collection of five games that are miniature
versions of Atari games. In Minatar, the games are represented
as a symbolic state space on a 10×10×n grid, where n
represents the number of channels, and each channel represents
an object such as walls, enemies or the agent. Minatar is an ideal

3https://platform.openai.com/docs/models
4https://openai.com/index/openai-o1-mini-advancing-cost-efficient-

reasoning/
5https://docs.mistral.ai/getting-started/models/models overview/
6https://docs.anthropic.com/en/docs/about-claude/models
7https://ai.google.dev/gemini-api/docs/models/gemini
8https://www.llama.com/docs/model-cards-and-prompt-formats/llama3 3/

Fig. 2: The five miniature versions of the Atari games (left
to right, top to bottom: Seaquest, Freeway, Asterix, Space
Invaders and Breakout), which are used for the synthesis of
the programmatic strategies. Each colour represents a different
type of object, e.g. the paddle in dark blue, the ball in green
and the track of the ball in pink for the game Breakout.

test bed for experiments, as the games are more efficient to learn
without changing the game mechanics of the original game.
Previously, Minatar was used in [24] to explain the behaviour
of agents through program synthesis, but it was only possible
to explain short sub-trajectories since enumerative search-based
methods were used to search through a predefined domain-
specific language that resembles Lisp. In our experiments, we
use all available Minatar environments, which are shown in
Figure 2. The games are:

• Seaquest: The agent controls a submarine and is able to
shoot bullets. The objective is to save as many divers as
possible, while also shooting enemy submarines or sharks.
Each time an enemy is struck, the reward is increased by
one. When the submarine saves the divers, the agent also
receives a reward.

• Freeway: The agent controls a chicken that needs to
cross a road during rush hour, while avoiding the traffic.
For each chicken that crosses the road safely, the agent
receives one point.

• Asterix: The objective of the game is to collect gold
while avoiding enemies. The player gets one point for
each collected gold and the game is over when the player
is hit by an enemy.

• Space Invaders: The agent controls a cannon and shoots
aliens while dodging bullets launched from the alien
spaceship. Additionally, the player must prevent the aliens
from reaching the bottom of the screen. For each destroyed
alien, one point is received.

• Breakout: The goal is to destroy all the bricks with the
ball by controlling the paddle to bounce the ball off before
it goes out off the screen. With each destroyed brick the
agent receives one point.

The LLMs were prompted to generate a Python function
which can be used as a policy to play the game. The prompt
contains information about the game rules, the objective of



5

TABLE II: Max Reward of the best program for the Minatar
experiments with 50 evaluation episodes.

Model Seaquest Freeway Breakout Asterix SpaceInvader

Claude Sonnet 2.43 7.22 18.43 11.37 29.07
Claude Haiku 3.68 7.33 7.13 6.78 21.91

Gemini Flash 2.98 8.07 12.3 6.09 26.34
Gemini Lite 0.58 6.49 15.56 5.06 16.57

Mistral Large 1.3 8.48 12.03 6.48 20.89
Mistral Small 0.26 8.2 5.59 5.88 22.41

o1 mini 5.73 9.52 21.81 10.39 22.45
GPT 4o 1.15 10.05 15.26 10.91 23.83
GPT 4o mini 0.47 8.44 8.56 6.55 27.45

Llama 3.3 70B 4.01 7.74 8.85 5.8 17.1
Llama 3.1 70B 4.08 8.02 4.39 5.54 13.04

Fig. 3: The text description of the state for the Breakout game
which is included in the prompt.

the agent and also the possible actions of the environment
and available game objects. The description of the game was
taken from Young and Tian [17]. The prompts for the games
are available in the code repository9. The LLM receives only
the initial state, which is preprocessed from the state input of
the environment, a one-hot encoded 3D array, into a 2D array
with text descriptions for each grid cell representing the cell’s
object. Figure 3 shows an example of the converted state for
Breakout. All other games convert the state in a similar way
so that the LLM can process the state input semantically.

Each of the games tests the LLM for different game concepts.
Space Invaders, Breakout and Freeway restrict the agent’s
movement by only allowing horizontal or vertical movement.
Space Invader and Seaquest allow the player to fight the enemy,
while in Asterix and Freeway the player can only avoid the
enemies. In Asterix, the player must also collect items in order
to receive a reward. Seaquest is the most difficult game, as
the player has to collect six divers and then reach the surface
so that the divers can leave the submarine, but at the same
time the player has to shoot down enemies. Breakout is one
of the easier games compared to the others, as there are no
opponents and the player only has to anticipate where the ball
will land in order to bounce it off with the paddle.

For each program, 50 evaluation episodes were performed.
All trials resulted in successful programs, i.e., programs that
were executable and returned a positive reward. Table II
presents the max. reward of the best program found and
Table III shows the average reward with the standard deviation
of the 10 programs found in each trial.

In general, larger models outperform their smaller coun-

9https://github.com/ManuelEberhardinger/Benchmarking-Language-Model-
Based-Program-Search-for-Games

TABLE III: Average reward of the 10 programs found after
each trial. We also report the standard deviation σ of the 10
programs after each trial. The min. reward for all games is 0,
which indicates that there is a high variance in between the
trials.

Model Seaquest Freeway Breakout Asterix SpaceInvader

Claude Sonnet 1.56±0.38 3.32±2.78 8.25±4.1 6.52±2.46 22.38±5.04
Claude Haiku 1.07±0.96 3.8±3.03 3.77±1.85 5.56±0.85 14.5±5.53

Gemini Flash 1.04±0.75 3.31±2.83 5.82±3.34 4.36±1.22 9.98±9.27
Gemini Lite 0.14±0.19 0.65±1.95 6.8±5.25 3.13±1.69 5.02±4.12

Mistral Large 0.29±0.45 6.6±2.3 5.69±2.67 4.75±1.12 12.62±4.85
Mistral Small 0.07±0.09 3.44±3.15 2.96±1.97 3.51±1.67 9.46±6.76

o1 mini 1.49±1.56 7.9±1.81 8.58±4.99 7.53±1.46 19.48±3.56
GPT 4o 0.36±0.36 7.75±1.56 6.6±3.97 7.36±2.85 15.29±4.7
GPT 4o mini 0.16±0.18 3.94±3.97 3.53±2.47 3.88±1.98 6.95±7.85

Llama 3.3 70B 0.79±1.14 3.22±2.26 3.42±2.86 3.87±1.39 6.16±4.07
Llama 3.1 70B 0.7±1.17 5.23±2.51 2.06±1.33 3.03±1.58 5.76±3.9

terparts in average reward, with o1 mini and Claude Sonnet
achieving the highest overall performance. This trend is also
reflected in the maximum reward: Claude Sonnet generated the
best programs for Space Invaders and Asterix, while o1 mini
produced the best results for Seaquest and Breakout. GPT 4o
found the best performing program for Freeway, although o1
mini slightly outperforms it on average.

In the case of Space Invaders, GPT 4o mini achieved the
second best program, though this appears to be a special case,
since its average reward is approximately three times lower than
that of Claude Sonnet, suggesting that the high performance
may be due to chance. The standard deviation across the top
10 programs is often quite high, indicating that multiple trials
of program search may be more effective than a single long
run. To explore this hypothesis, we conduct a long running
experiment in the Minatar domain, presented in section VI,
where we also show reward curves to determine when the best
programs is found. Interestingly, in some cases smaller models
outperform their larger counterparts, e.g., Claude Haiku in
Seaquest and Freeway and Gemini Flash Lite in Breakout. It
can be seen from both tables that it is more difficult to find
good programs for more complicated games such as Seaquest.

Looking at the best programs for each LLM in Seaquest, o1
mini is the only model that defines multiple utility functions
to check if it can shoot enemies, or implements one-step look-
ahead (OSLA) to check if nearby cells are safe to move to.

In Freeway, all the best performing programs show similar
behaviour for each LLM and implement some form of OSLA
to check whether it is safe for the chicken to cross the road.
GPT 4o’s best performing program even uses three look-ahead
steps, i.e. it only moves forward if the three cells above the
chicken are empty.

For Breakout, the best programs are all able to locate the
ball and also determine the direction in which the ball is
moving. Claude Sonnet and o1 mini even check whether the
ball bounces off walls. The best performing program of o1
mini simulates the movement of the ball until it is in the same
row as the paddle.

In Asterix, the best performing programs with a reward over
10 prioritise reaching the gold while checking whether it is
moving towards an enemy and, if so, avoiding the enemy. The



6

TABLE IV: The minimum distance of the best program for the Asteroids ship driving experiments for different rotation speeds
ω in degrees per second. Davg shows the average distance of the best programs for the different rotation speeds. For each
program, the same set of 5 evaluation tasks were used, each with different target positions and initial states of the ship. The
heatmap uses an inverted colour gradient, i.e., values close to zero are darker.

Model ω = 10 ω = 20 ω = 30 ω = 40 ω = 50 ω = 60 ω = 70 ω = 80 ω = 90 ω = 100 Davg

Claude Sonnet 133.36 97.97 87.09 69.18 70.19 72.03 75.75 66.71 69.61 65.67 80.76
Claude Haiku 101.0 119.55 92.98 71.7 79.92 67.01 62.01 74.83 69.19 75.37 81.36

Gemini Flash 171.79 109.88 81.12 85.61 69.4 74.91 76.53 74.07 67.49 74.02 88.48
Gemini Lite 169.27 106.47 91.18 72.45 62.3 73.63 57.69 101.62 100.37 68.42 90.34

Mistral Large 113.69 76.54 82.5 68.81 68.42 83.33 55.62 63.58 61.58 57.04 73.11
Mistral Small 144.33 90.16 71.24 100.13 57.9 60.84 68.51 58.6 56.92 56.53 76.52

o1 mini 123.64 101.49 86.57 77.88 83.49 64.92 79.07 71.62 57.42 71.16 81.73
GPT 4o 127.58 99.21 78.93 111.06 64.91 99.81 95.28 83.24 74.2 61.57 89.58
GPT 4o mini 144.86 134.72 104.54 111.67 89.83 94.26 84.0 96.41 95.25 96.99 105.25

Llama 3.3 70B 152.17 106.87 111.51 119.46 105.09 106.36 77.21 97.09 75.86 101.72 105.33
Llama 3.1 70B 135.31 96.67 92.75 72.29 74.85 62.51 62.15 64.76 58.73 62.49 78.25

mediocre performing models often prioritize the gold without
checking if there are enemies nearby. Claude Sonnet even takes
into account the trail of the enemy to check if the chosen action
is safe.

In Space Invader, the good programs with a reward of over 20
correctly locate the enemy bullets, the aliens and the cannon
and then use threat detection to check whether the enemy
bullets need to be dodged before the enemies themselves are
shot. The programs with a score below 20 do not anticipate
the movement of aliens or prioritise shooting enemies over
avoiding enemy bullets.

Overall, it can be said that in the Minatar games larger
models on average show more sophisticated behaviour in the
programs, but as can be seen with Claude Haiku or Gemini
Flash Lite, this is not always the case, since for some games
they achieve a better reward. Currently, only a very simple
prompting strategy is used, which already gives comparable
results to some of the baselines reported in [17] or even
outperforms all baselines in the case of Breakout. Using more
complicated prompting strategies, such as Chain of Thought
[51] or adding a crossover operator could lead to improvements
in the programs found.

C. Vehicle Driving

The task is to pilot an Asteroids-style spaceship from its
start state to the target, where it should rest until the end of
the episode. Each episode is 101 steps. At each step, there
are 4 discrete actions: NO OP, THRUST, ROTATE LEFT,
ROTATE RIGHT. We experimented with vehicle physics in
order to make an interesting challenge. Drag is set to be low,
which leads to a high risk of overshooting the target unless
countermeasures are taken. At each step, the agent is given an
observation of the ship state and the position of the target.

The prompt includes some helper classes and functions,
including a Vector2d class and the Asteroids ship, as well
as a Vehicle superclass. In addition, we add strong hints to
make the problem solvable for LLMs, which are summarized
as follows10:

10The complete prompt is given in the code repository.

• Best solved using search algorithms: try One Step
Lookahead, Monte Carlo Tree Search or Rolling Horizon
Evolution.

• Try using a heuristic function that values facing towards
the target as well as being close to the target.

• Try using Macro-actions - e.g. simply repeating each
action a number of times.

Table IV shows the results of the driving experiments for
different rotation speeds ω to adjust the difficulty level of
steering the asteroid ship. The numbers are the minimum
distance achieved by the best program for five evaluation
episodes. Davg is the average of all distances for each LLM.
We omit the number of successful iterations because no LLM
managed to stop the asteroid ship at the target position in all five
evaluation episodes. A program was considered successful if it
could consistently stop the vehicle within a specified tolerance
t across all evaluation episodes. In our experiments, the
synthesized programs succeeded in stopping the vehicle in only
one or two episodes within a tolerance of t = 10, and thus no
program qualified as successful. The best models overall are the
two Mistral LLMs, which together achieve the best programs
for 9 out of 10 rotation speeds. Only for ω = 10 did another
LLM (Claude Haiku) find the best program. In terms of Davg ,
larger models generally outperformed their smaller counterparts
but usually only by a small margin. As no LLM successfully
solved the problem with a simple prompting strategy in this
experiment, we consider it a compelling challenge for future
research.

D. Baba is You

Baba is you is a complex puzzle game in which the player
manipulates a 2D grid environment to reach a given goal. The
environment consists of word blocks and corresponding entities
that can be pushed around. By placing word blocks next to
each other, rules can be formed. These rules are active as long
as the given word block sequence remains intact. This way,
players can change how objects behave, which objects they
control, or which conditions must be satisfied to win.



7

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4 (e) Level 5

(f) Level 6 (g) Level 7 (h) Level 8 (i) Level 9 (j) Level 10

Fig. 4: Demo levels used for the evaluation of LLM capabilities in the Baba is You domain.

TABLE V: Highest reward per language model and level (with number of successful trials per level). The color of the heatmap
is based on the successful trials, as it is more important to know how many times the LLMs were able to solve a level out of
all 10 trials or if the trials were solved randomly.

Model Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 #Levels
solved

Claude Sonnet 95 (10) 89 (5) 0.0 (0) 95 (10) 0.0 (0) 91 (1) 94 (10) 95 (10) 90 (1) 92 (3) 8
Claude Haiku 95 (10) 0.0 (0) 0.0 (0) 95 (10) 0.0 (0) 0.0 (0) 94 (10) 95 (10) 0.0 (0) 0.0 (0) 4

Gemini Flash 95 (10) 0.0 (0) 0.0 (0) 95 (2) 0.0 (0) 0.0 (0) 94 (7) 95 (9) 0.0 (0) 0.0 (0) 4
Gemini Lite 95 (10) 0.0 (0) 0.0 (0) 95 (2) 0.0 (0) 0.0 (0) 94 (7) 95 (9) 0.0 (0) 0.0 (0) 4

Mistral Large 95 (6) 89 (1) 0.0 (0) 72 (1) 0.0 (0) 0.0 (0) 94 (9) 95 (7) 0.0 (0) 0.0 (0) 5
Mistral Small 95 (6) 0.0 (0) 0.0 (0) 63 (1) 0.0 (0) 0.0 (0) 94 (2) 95 (8) 64 (2) 0.0 (0) 5

o1 mini 95 (10) 89 (2) 0.0 (0) 95 (10) 0.0 (0) 0.0 (0) 94 (10) 95 (10) 82 (1) 92 (5) 7
GPT 4o 95 (10) 89 (1) 0.0 (0) 95 (9) 0.0 (0) 0.0 (0) 94 (8) 95 (9) 0.0 (0) 92 (1) 5
GPT 4o mini 95 (8) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 90 (3) 95 (4) 0.0 (0) 0.0 (0) 3

Llama 3.3 70B 95 (10) 0.0 (0) 0.0 (0) 95 (3) 0.0 (0) 0.0 (0) 94 (6) 95 (6) 0.0 (0) 0.0 (0) 4
Llama 3.1 70B 95 (10) 0.0 (0) 0.0 (0) 95 (2) 0.0 (0) 51 (1) 94 (4) 95 (6) 0.0 (0) 0.0 (0) 5

For our experiments, we used a Python version11 of the Keke
is You AI framework [18]. For this domain, we prompted the
LLMs to provide a policy, giving a short description of the
game and the initial state of the level (the complete prompt is
in the repository). Similar to the Minatar experiments, the state
is converted into a text description. The function to be written
should use the current state as input and return a movement
direction or the command for waiting a turn. Each episode
ends after 100 actions or once the win condition is fulfilled. A
reward is awarded based on the maximum number of actions
(100) minus the number of steps taken. Thus, the return can
be maximized by finishing the level as fast as possible. Each
level can be solved in less than 20 actions.

In our tests, we queried the agent to solve 10 simple demo
levels (see Figure 4). Each of the levels focuses on one or more
key mechanics of the framework such as rule interpretation
(levels 1-10), rule creation (levels 2, 3, 5) or destruction (levels
6, 8, 9, 10), and object manipulation (level 7). Table V shows
the results of our comparison of the LLM models’ capabilities.
The number of successful iterations is shown in brackets.

All agents were able to solve at least 3 out of 10 levels,

11https://github.com/ADockhorn/Keke-AI-PY

with Claude 3.5 Sonnet being the only model able to solve 8.
For Claude and GPT, models of the same vendor with a higher
number of parameters were able to solve more levels. For the
Llama models, the 3.1 version solved one more level than
the 3.3 model. In case of Gemini and Mistral, both the small
and large models performed about the same. Tested models
were mostly successful in interpreting existing rules. As can
be seen, some levels are rarely solved by any model. Creating
or destroying rules and thus modifying the logic of our game
world has proven difficult for all models. Many models failed
in solving levels 2 and 3, which require rule creation, and
levels 9 and 10, which require a rule’s destruction to finish the
puzzle. Slight differences in the observed success rate could
be due to the low number of repetitions per level, resulting in
sampling errors: levels 2, 6, 9, and 10, which are rarely solved
at all, could be affected by this. Chain of thought prompting
[51] may help in overcoming these more complex planning
tasks.

E. Procedural Content Generation

PCG is a widely studied area in game research [52], [53].
In this experiment, we explored whether LLMs can synthesize



8

Fig. 5: Three generated mazes aiming to optimise the longest
shortest path objective. Left: (score 18) example from a simple
LLM generated algorithm setting wall cells with a fixed prob-
ability. Middle: (score 38) example a more sophisticated LLM
algorithm involving recursion and a shortest path algorithm.
Right: (score 54) example from an evolutionary algorithm
directly optimising for the objective function.

Python functions capable of generating diverse game content.
To assess this in a simple scenario, we tasked the LLMs with
creating functions that produce random mazes adhering to
specific design objectives.

The prompt advised the LLMs to use the longest shortest
path objective to guide the maze generation process. This
objective encourages intricate and interesting mazes. Most of
the generated code ignored the hint and instead coded overly
simple algorithms, placing corridors and walls in each cell
with a given probability while usually ensuring that the start
and end points were not on wall cells. An example generated
maze is shown in the left of Figure 5. Occasionally, a better
algorithm was produced that mixed randomness, recursion
and graph search in ways we have not fully analysed. These
algorithms sometimes produced mazes with no path between
start and end, resulting in a score of -1. When they worked,
they often produced reasonable mazes such as the one shown in
the middle of Figure 5. The LLMs failed to find an algorithm
as effective as an evolutionary algorithm applied to directly
solve the objective. A sample maze from such an algorithm is
shown on the right of the figure.

Note that here we are evaluating the effectiveness of the
algorithms in meeting the specified objective, which is to
produce mazes with the longest shortest path between start
and end. Depending on the application, this could be a poor
objective to maximise, with the best mazes having a mid-
ranking score, such as the central maze in Figure 5.

Table VI presents the results of the maze generation
experiment. Unlike the previous tasks, smaller models perform
in line with, or even outperform, their larger counterparts.
Among the larger models, only GPT-4o achieves performance
on par with the smaller models, although it performs slightly
worse in terms of Davg . Mistral Large also performs similarly
to Mistral Small, but both models cannot keep up with models
from other LLM providers. As with Table III, the high standard
deviation of Davg in this experiment supports the additional
long-running experiments in Section VI.

The reasoning model o1-mini outperforms both variants of
GPT-4o with respect to Dmax, but falls short compared to GPT-
4o mini in terms of average distance. Overall, most models
struggle with this task, with the exception of the OpenAI
models and Claude Haiku. Understanding why larger language

TABLE VI: Maze generation LLM results. Dmax is the
maximum distance of the shortest path of the generated mazes
returned by the best program of all trials and Davg ± σ is the
average distance with the standard deviation of the 10 programs
found after all trials. Each program generates five mazes for
evaluating Dmax and Davg ± σ.

Model Dmax Davg ± σ

Claude Sonnet 18.0 8.98±3.79
Claude Haiku 29.4 15.4±8.73

Gemini Flash 17.0 15.7±1.28
Gemini Lite 23.2 14.36±5.46

Mistral Large 10.8 4.2±3.3
Mistral Small 10.8 4.6±3.65

o1 mini 44.4 18.56±15.92
GPT 4o 33.4 18.48±11.66
GPT 4o mini 33.4 22.02±11.76

Llama 3.3 70B 14.8 8.3±3.75
Llama 3.1 70B 11.4 6.76±2.67

models underperform in this domain remains an open question,
but is beyond the scope of this paper.

F. Python Code Evaluation

Table VII shows the summary statistics of the synthesized
Python code for the Minatar, Baba is You, maze generation and
vehicle driving experiments, including the costs incurred. On
average, the larger models do better than their small counterpart.
In the case of Llama the newer 3.3 model beats the 3.1 model
in terms of the successful iterations and trials. The successful
iterations are, however, quite similar for all LLMs. The Mistral
models have by far the worst percentage of executable programs
but are still on the 4th and 6th rank in terms of overall
performance, which indicates that the percentage of executable
programs are not a good proxy for selecting an LLM to generate
game-related Python code. o1 mini is on average the best model
on all Python domains, and is also the only reasoning model
in this benchmark. This indicates that reasoning models have
an advantage in generating game-specific code. A more fine-
grained ranking of LLMs for each domain is presented in
Table X in Section VII, where we discuss the experiments in
general and also give some practical recommendations.

G. Tabletop Games Framework (TAG)

The TAG framework is a bespoke Java research framework
that supports the implementation of multiplayer tabletop board
games. This introduces a number of new challenges:

• The games are in general more complex than the simple
one-player games in previous sections.

• They are also inherently multiplayer. As such there is im-
plicit opponent modeling required for good play strategies.
The environment is no longer a ‘simple’ stationary MDP,
but is adversarial.

• The TAG framework has a number of local
libraries and coding conventions; for example
decks of cards are implemented via Deck<> or
PartialObservableDeck<> parameterised classes.



9

TABLE VII: The overall evaluation of the synthesized Python
code. Cost is the total cost of all 2600 iterations for the LLM
(100 per game) (the Llama 3.1 70B model is provided for free
by Google Cloud as it is currently in public preview). S.Iter. is
the percentage of iterations that resulted in working code and
S.Trl the percentage of trials (each consisting of 10 iterations).
Only programs that returned a positive reward were considered
for S.Iter and S.Trl. Exec. Programs is the percentage of all
generated programs that the Python interpreter could run. For
each of the four domains each LLM is ranked from 1 to 11
based on the performance of the best result for the domain.
This rank is averaged and used to assign an overall Rank.
Gemini Flash and Llama 3.1 70B both achieved the 7th place.

Model Cost ($) S.Iter S.Trl Exec. Programs Rank

Claude Sonnet 80.75 63.27 80.77 83.23 2nd
Claude Haiku 17.34 61.35 76.92 86.35 5

Gemini Flash 2.56 62.62 72.31 95.85 7
Gemini Lite 1.30 61.15 71.54 94.28 10

Mistral Large 43.57 60.08 70.77 75.37 4
Mistral Small 2.06 59.65 68.85 74.7 6

o1 mini 35.87 62.88 80.0 90.93 1st
GPT 4o 36.11 62.19 76.15 92.09 3rd
GPT 4o mini 2.18 62.0 67.31 91.09 9

Llama 3.3 70B 6.86 62.08 71.15 92.34 11
Llama 3.1 70B 0.00 61.08 70.38 82.59 7

These are not likely to be present in the LLM training
data, and require the LLM to generalise to unseen
software architecture details. This contrasts to standard
Python with common libraries of the games in earlier
sections.

• The language used is now Java. Integration of all language
models apart from Llama used langchain4j12. Llama
experiments used the Gemini Vertex AI interface to access
the Google Llama model-as-a-service13.

Algorithm 2 was applied to 12 tabletop board games (see
Table VIII) implemented in TAG. These are adversarial multi-
player environments with partial observability and stochasticity
and varying levels of complexity. One player count in the
supported range for each game was selected for use to give an
even distribution of player counts between 2 and 4.

Given the additional level of complexity of these games,
and different (and often dynamic) action spaces for each game,
the language models were not asked to write a full policy to
play the game. Instead they were asked to write a heuristic
function to estimate the value of a game state for a player.
This should be close to 1.0 for a position that is a definite win,
to 0.0 for a position that is a definite loss (other heuristics are
possible, taking account of relative scores or ordinal positions,
but this simple win/loss estimate keeps things simple). This
heuristic function was then used within a search algorithm;
either one step lookahead (OSLA) or Monte Carlo Tree Search
(MCTS) [54].

Each of these games has very different rules and implemen-

12https://docs.langchain4j.dev
13https://console.cloud.google.com/vertex-ai/publishers/meta/model-garden

TABLE VIII: TAG results by game. S.Iter is the percentage of
iterations that resulted in working code and S.Trl the percentage
of Trials (each consisting of 10 iterations). P is the number
of players, Best Agent records the model that won the round
robin tournament. SM is the number of models that produced
any working code and entered an agent in the round robin
tournament. BB indicates if the best agent significantly Beats
the Baseline agent (OSLA or MCTS); ≈ means performance
matches the baseline.

Game P S.Iter S.Trl SM Best Agent BB

Can’t Stop 3 65% 91% 11 o1-mini Yes
Colt Express 3 19% 44% 10 Llama 3.3 70B Yes
Connect 4 2 61% 88% 11 o1-mini ≈
Diamant 4 39% 89% 11 GPT 4o mini Yes
Dominion 3 13% 44% 7 Gemini Flash Yes
Hearts 4 31% 65% 10 GPT 4o Yes
Love Letter 3 19% 37% 9 o1-mini ≈
Poker 4 18% 50% 11 GPT 4o mini Yes
Seven Wonders 4 25% 40% 7 GPT 4o Yes
Sushi Go! 4 30% 58% 10 Gemini Flash Yes
Tic-Tac-Toe 2 67% 87% 11 No differences Yes
Virus 2 29% 55% 8 Gemini Flash Yes

tations in TAG. To achieve the target of a scalable system that
required no hand-writing and tuning of LLM prompts for each
new game, two new TAG-specific elements were implemented
to augment the process:

1) Automatic extraction of the game-specific APIs. This uses
Java Reflections to extract information on the methods
and associated Javadoc on the game state object. The
entry point for this is the Class name of the main
game state. All public information gathering methods
on this are extracted (defined as names matching on
either get*(...) or is*(...). APIs for any class
dependencies on these methods, as parameters or return
values, are also extracted and this recurses until the core
java libraries are reached (these are excluded).

2) Automatic rulebook digestion. This takes as input the text
in the game rulebook. An approach inspired by [55] is
used. The PDF rulebook is first broken down into chunks
of 1000 or 2000 words (so any icons or pictures are
excluded). The LLM is then given each chunk in turn and
asked to summarise in 200 words or less the information
about the game rules. This final set of synopses is then
fed to the LLM with a prompt to, ‘Summarise this
information in 500 words or less.’. This provides blocks
of text to include in the prompt used in the main loop
of Algorithm 2 that explains the rules of the game. This
rulebook digestion was done once for each game using
the GPT 4o mini model. This ensures the comparison
between models is based only on their heuristic writing
ability, and they all use the same prompt.

These new tools enable a scalable and game-agnostic process
to be run on all games. The input for each game is the game
rulebook as a PDF file, and a Java Class name for the main
game state. Additionally, the methods on the main game state
were briefly reviewed for meaningful Javadoc comments, public
visibility and name convention to ensure that they were picked



10

up by the automated API process. An example full prompt (for
Sushi Go!) is included in the code repository.

The multi-player nature of these environments also neces-
sitates a change in the evaluation criterion in Algorithm 2.
Evaluation used a tournament of 500 games between the new
agent and a base agent. The base agent was either a one
step lookahead (OSLA) agent (for Tic-Tac-Toe and Virus) or
a vanilla MCTS agent (all other games) with a budget of
10ms and a rollout of 10 actions before the generated heuristic
function is applied to estimate the value of the state. TAG uses
Multiplayer-UCT with the heuristic applied for each player
independently after a rollout of 10 actions [56]. This small
budget enables the large number of experiments to be run in
a reasonable time, but will not give the best possible players,
although we do get perfect play in Tac-Tac-Toe at about 30ms
with no heuristic. It remains an open question how this might
change with a larger budget, but what is important here is the
comparative performance of the generated heuristics.

A base opponent used the same OSLA or MCTS settings
and a heuristic function of the game score normalised to [0,
1]. Tic-Tac-Toe and Connect 4 do not have scores, and the
base opponents for these rewarded a win (+1) or draw (+0.5),
with 0 for a loss. To avoid overfitting to a specific opponent
all previous (working) agents to the evaluation tournament are
added to later iterations within a trial. The evaluation score of
each generated heuristic is the win rate from the most recent
tournament, so this includes a broader range of opponents later
in the trial. This performance metric means that, unlike the
single-player environments, the scores from each run are not
directly comparable. This modifies lines 12-17 of Algorithm 2;
EVALUATEFITNESS returns the current best-performing of the
agents, and this is retained as the new bestResult. Each trial
is restarted with just the base opponent.

For each game a final tournament of 25,000 games is run
between the best agents from each model, for a maximum of
11 participants if all models generated at least one heuristic
that compiled and executed successfully. Points in Table IX are
awarded for 1st through 10th places in this final tournament
for each game. This methodology compares the results of the
models directly and rewards an LLM that produces a variety
of heuristics, including some that are very good at the game,
over one that reliably generates valid, but near-identical code
each time.

Table IX summarises the results by language model. The
Gemini 2.0 Flash model does best overall in the final tourna-
ment, generates valid code consistently and is much cheaper
than the OpenAI models that also do very well. The older
Mistral models do least well on these tasks on all measures;
the larger Llama model is best at generating working code,
but the performance of its best agents is relatively poor; the
Anthropic models are much more expensive than the others,
but this is not reflected in performance levels. The reason the
smaller Gemini model is more expensive (it was 25% cheaper
per token) is less working code was generated (S.Iter) so there
were many more calls back to the model to fix compilation
errors.

Large models do better on average than their smaller
counterpart in terms of both the number of successful iterations,

TABLE IX: TAG results by model. S.Iter and S.Trl are the
same as for Table IX, plus FG is the number of games for
which the LLM failed to produce any working code. Cost is
the total cost of all 1200 iterations (100 per game) on the LLM.
For each game in a round-robin tournament between the agents,
10 Points are given for the first place, 9 for 2nd, and so on
down to 1 for 10th place. Zero points are awarded otherwise,
including for LLMs that failed to produce any working code
for a game. The Points column is the total of these, and Rank
is the ranked order of models by points.

Model S.Iter S.Trl FG Cost ($) Points Rank

Claude Sonnet 17% 82% 0 134.47 61 6
Claude Haiku 8% 50% 0 86.71 36 9

Gemini Flash 54% 78% 0 1.60 84 1st
Gemini Lite 28% 51% 0 2.93 63 5

Mistral Large 16% 34% 2 19.73 26 10
Mistral Small 17% 30% 7 3.24 20 11

o1-mini 58% 75% 1 23.92 69 3rd
GPT 4o 41% 62% 1 26.01 72 2nd
GPT 4o mini 32% 65% 1 4.99 67 4

Llama 3.3 70B 63% 82% 2 3.51 48 7
Llama 3.1 70B 49% 65% 1 0.00 41 8

trials and in the quality of the best heuristics produced.
However, in most cases the performance differences are small
and this effect is smaller than the differences between the
model families. GPT 4o mini is a fifth of the cost of GPT 4o,
but still writes the best agent in 2 games, and is only a few
points behind in tournament points.

The fact that many trials fail to produce any working code
over 10 iterations show the importance of re-starts, as using a
single trial for each game led to more random results.

Overall results by game are shown in Table VIII. One
common reason for failure of an iteration was code that
compiled but then failed to execute in all edge cases due
to poor error checking for division by zero (throwing a runtime
error during the evaluation tournament was counted as a failure
of the iteration). There was no clear pattern of performance
improvement across the 10 iterations of each trial. In some
cases the later heuristics were better than the first attempts,
but equally often the overall winner was the first heuristic
found and later changes did not improve performance. The
benefit of running more iterations for improved performance
is investigated further in Section VI. The complexity of API
to an LLM is not always the same as complexity of a game.

Otherwise the models were often creative in their invention
of undocumented API methods causing compilation to fail.
The game with the highest trial success rate, Can’t Stop, is
also the only game for which the base game state has no
dependencies outside the core java.lang and java.util
libraries, reducing the opportunities for LLMs to hallucinate
about non-existent methods.

In contrast the card games in the set cause much more LLM
code to fail to compile. All the 8 games in Table VIII with
S.Iter below 35% use decks of cards, and none of the 4 games
with S.Iter above this do. The TAG-specific infrastructure of
Deck<> and PartialObservableDeck<> parameterised



11

0 200 400 600 800 1000
Iteration

0

2

4

6

8

Re
wa

rd
Seaquest

0 200 400 600 800 1000
Iteration

0

2

4

6

8

10

Re
wa

rd

Freeway

0 200 400 600 800 1000
Iteration

2

4

6

8

10

Re
wa

rd

Asterix

0 200 400 600 800 1000
Iteration

0

5

10

15

20

25

30

35

Re
wa

rd

Space Invader

0 200 400 600 800 1000
Iteration

0

5

10

15

20

Re
wa

rd

Breakout

Fig. 6: The reward curves for each Minatar environment for the long-running experiments. The x-axis shows the number of
iterations and the y-axis the reward of the best program. The dashed red-line shows the max. reward achieved by the best LLM
from Table II. We use the same parameters as in Section V-A, only with 1000 iterations instead of 10 per trial.

classes, with their own interfaces often caused problems. For
example Deck.getSize() is used to return the number of
cards, and despite this being mentioned in the prompt through
recursion of the class hierarchy, many LLMs tried to call the
non-existent Deck.size() or Deck.length(). A similar
problem in Sushi Go! was that the card types in the game were
represented by an enum that had values expressed in lower case;
Maki, Sashimi, Dumpling. Despite these values being
clearly stated in the Java API section of the prompt generated
code more commonly used MAKI, SASHIMI, DUMPLING.
This is presumably because an upper case convention is more
standard across Java more generally and hence in the training
data of the models.

Table VIII, column BB, shows that at least one of the LLMs
wrote a heuristic that could reliably beat the baseline score
heuristic in 10 of the 12 games, and was at least competitive
in the other two. Running just one trial per game per LLM
(10 iterations) does not reliably get baseline performance, and
restarting is needed to get a good end result from multiple
independent attempts.

VI. A THOUSAND ITERATIONS FOR MINATAR

To evaluate the impact of the number of iterations on program
search, we perform 1000 iterations for each game available in
Minatar. We keep the same values for the other parameters,
i.e. 10 trials for the program search and three attempts for
generation/improvement or repair of non-executable programs.
Figure 6 shows the reward curves for each environment for the
long-running experiments. In most games (with the exception
of Freeway and Asterix) there is a high variance in the rewards
achieved in each trial, suggesting that more restarts are better
than running for more iterations. The reward curves for Freeway
support this statement, since in some trials, the programs
found after early iterations are almost as good as after the
last iterations. It is also clear that the max. reward of the best
trial achieves a better result for Seaquest and Space Invader

TABLE X: The ranking of the LLMs on the different domains
with the overall ranking of all experiments. It is clear there
are major differences between the domains.

LLM Minatar Maze Baba Vehicle TAG Overall

Claude Sonnet 3rd 6 1st 4 6 3rd
Claude Haiku 7 4 7 5 9 6

Gemini Flash 4 7 7 7 1st 4
Gemini Lite 11 5 7 9 5 10

Mistral Large 6 10 3rd 1st 10 5
Mistral Small 9 10 3rd 2nd 11 9

o1 mini 1st 1st 2nd 6 3rd 1st
GPT 4o 2nd 2nd 3rd 8 2nd 2nd
GPT 4o mini 5 2nd 11 10 4 6

Llama 3.3 70B 8 8 7 11 7 11
Llama 3.1 70B 10 9 3rd 3rd 8 8

and approaches the same reward for Breakout as the best LLM
from Table II. For Freeway, the LLM is not able to improve
the reward compared to the 10 iterations experiment, while for
Asterix the reward is almost doubled but still not as good as
the best LLM from the previous experiments.

VII. PRACTICAL RECOMMENDATIONS & DISCUSSION

Table X shows a global ranking of the LLMs for the different
domains. It is clear that there are major differences between the
model families; for example, Mistral models are best for vehicle
driving, while the OpenAI models are best for generating mazes
and the Minatar domain. o1 mini is overall the best model,
which is expected since it is the only reasoning model, and
thus uses more compute than the others. For generating code
in Java for TAG, Gemini 2.0 Flash is the best model followed
by the GPT model family. A rather unexpected result is that
Llama 3.3 is worse than Llama 3.1, although Meta advertises
that it achieves a performance comparable to the Llama 3.1
405B model. In general, the open-source Llama models cannot



12

keep up with the closed-source models of the LLM providers.
However, the reasons for this are difficult to analyse as we
do not know the parameter size of the paid models and there
are also differences in the training pipeline and dataset. The
70B-Llama models are probably larger than the small closed-
source models, but much smaller than the large models. With
enough iterations and restarts, the 70B model of Llama 3.1
achieves the same performance as the large models of OpenAI
and Claude, but only with 100 times more iterations. This
indicates that it is in principle possible to achieve the same
performance with open-source models, they just need more
time to find good programs.

After discussing the game applications and the long-running
experiments, there are several practical recommendations we
can make for using LLMs to synthesize programs for game
research. These depend primarily on the available financial
resources, hardware and time.

If money is no issue, it is best to try different models and to
start with the larger models as good programs are found more
quickly. With financial constraints, but local hardware to run
the Llama 3.1 or 3.3 70B model, e.g. on a 48GB GPU with
4-bit quantization [57], then it is better to run local models for
more iterations, as a similar reward to the Claude or OpenAI
LLMs can be achieved. However, depending on the simulation
environment, this may take much longer.

If there are financial and time constraints, we recommend
using Table X to select the best models for a given domain.

One unexpected finding is that larger models are not always
better, e.g. in the maze generation experiments, where most
smaller models were better than their larger counterpart.
Therefore, smaller models are worth trying and should not
be dismissed from the start. They can also be much more
cost-efficient overall even if they are run for many more
trials/iterations. The results in Table IX make clear that total
model costs can vary by 2 orders of magnitude with the cheaper
model giving better results on a particular problem.

From the long-running experiments it is clear that more
restarts are better than always running more iterations. The
number of iterations depends heavily on the problem domain,
and more difficult problems also need more iterations. This is
visible in Figure 6 for Seaquest, the most complicated Minatar
domain, where the reward increases only in later iterations
compared to Freeway or Asterix.

VIII. CONCLUSION

In this work we studied and evaluated the current possibilities
of using LLMs for program search in the area of games for
various applications. Previous work was mostly limited to a sin-
gle problem or game without being easily transferable to other
domains, as the DSL had to be adapted. We demonstrated that
LLMs can overcome the problem of combinatorial explosion
of search spaces constructed with predefined DSLs, and that
LLMs are able to synthesize programmatic policies in Python
for the Minatar domain, which was not possible with a custom
DSL and previous methods. Furthermore, we have shown that
this framework can be easily adapted to different applications
by modifying the prompts, and that it often provides reasonable

results even without much customization. We have shown that
even with the default temperature settings on these standard
language models there is a very wide range of output for the
same input prompt; in this respect at least the models can be
quite ‘creative’. Running many independent iterations of the
same task can create a varied population of outputs. This is
very promising as it provides the variation required for the
hill-climbing approach used here.

We observed limitations in the quality of the generated
code. For example, in the simple 2D vehicle driving task, the
generated code drove the car to the target but then failed to stop
most of the time. Much of the generated code fails to achieve
any reward at all, or in the case of Java, to compile. These
limitations become more evident as the complexity of the task
increases. The need to use framework-specific Java libraries in
TAG leads to less than 1 in 5 attempts generating valid code.
We believe limitations such as this could be overcome with
more sophisticated search and better prompt engineering, but
the results so far give an idea of the limitations of what can be
achieved with relatively little effort. The addition of tools to the
LLM interfaces and a more agentic workflow is a promising
area for this future work. For example instead of asking the
LLM to generate the code in one pass, it could be asked to
construct useful component functions or sub-modules with
documented interfaces. In a later pass the model could then
be asked to combine these sub-modules (based on feedback of
performance of previous combinations).

IX. ACKNOWLEDGEMENTS

This work stems from a working group in the Dagstuhl Sem-
inar 24261 (Computational Creativity for Game Development,
2024) and it was supported by the EPSRC Centre for Doctoral
Training in Intelligent Games & Games Intelligence (IGGI)
(EP/S022325/1). Additionally, the research collaboration was
facilitated by COST Action CA22145 - GameTable, supported
by COST (European Cooperation in Science and Technology).

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
others, and W. Zaremba, “Evaluating large language models trained on
code,” 2021, arXiv preprint.

[2] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations
and Trends® in Programming Languages, vol. 4, no. 1-2, pp. 1–119,
2017.

[3] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive
program synthesis,” in Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications, October 2015, pp. 107–126.

[4] E. Butler, K. Siu, and A. Zook, “Program synthesis as a generative
method,” in Proceedings of the 12th International Conference on the
Foundations of Digital Games, August 2017, pp. 1–10.

[5] E. Butler, E. Torlak, and Z. Popović, “Synthesizing interpretable strategies
for solving puzzle games,” in Proceedings of the 12th International
Conference on the Foundations of Digital Games, August 2017, pp.
1–10.

[6] T. Silver, K. R. Allen, A. K. Lew, L. P. Kaelbling, and J. Tenenbaum,
“Few-shot bayesian imitation learning with logical program policies,” in
Proceedings of the AAAI Conference on Artificial Intelligence (Vol. No.
06: 34, April 2020, pp. 10 251–10 258.

[7] J. R. H. Mariño, R. O. Moraes, T. C. Oliveira, C. Toledo, and
L. H. S. Lelis, “Programmatic strategies for real-time strategy games,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,
no. 1, pp. 381–389, May 2021.



13

[8] M. Kreminski and M. Mateas, “Opportunities for approachable game
development via program synthesis,” in AIIDE Workshops, 2021.

[9] M. Cook, “Software engineering for automated game design,” 2020 IEEE
Conference on Games (CoG), pp. 487–494, 2020.

[10] G. Todd, A. G. Padula, M. Stephenson, E. Piette, D. J. N. J. Soemers,
and J. Togelius, “GAVEL: Generating games via evolution and language
models,” in The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

[11] C. Hu, Y. Zhao, and J. Liu, “Game generation via large language models,”
in 2024 IEEE Conference on Games (CoG). IEEE, 2024, pp. 1–4.

[12] A. Anjum, Y. Li, N. Law, M. Charity, and J. Togelius, “The ink splotch
effect: A case study on chatgpt as a co-creative game designer,” in
Proceedings of the 19th International Conference on the Foundations of
Digital Games, May 2024, pp. 1–15.

[13] S. Hu, Z. Huang, C. Hu, and J. Liu, “3d building generation in minecraft
via large language models,” in 2024 IEEE Conference on Games (CoG).
IEEE, 2024, pp. 1–4.

[14] M. Liu, C.-H. Yu, W.-H. Lee, C.-W. Hung, Y.-C. Chen, and S.-H.
Sun, “Synthesizing programmatic reinforcement learning policies with
large language model guided search,” in The Thirteenth International
Conference on Learning Representations, 2025.

[15] H. Tang, D. Key, and K. Ellis, “Worldcoder, a model-based llm
agent: Building world models by writing code and interacting with
the environment,” Advances in Neural Information Processing Systems,
vol. 37, pp. 70 148–70 212, 2024.

[16] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana,
“Design and implementation of tag: a tabletop games framework,” 2020,
arXiv preprint.

[17] K. Young and T. Tian, “Minatar: An atari-inspired testbed for thorough
and reproducible reinforcement learning experiments,” 2019, arXiv
preprint.

[18] M. Charity and J. K. A. I. Togelius, “Competition: Solving puzzle levels
in a dynamically changing mechanic space,” in 2022 IEEE Conference
On Games (CoG), 2022, pp. 570–575.

[19] A. Cropper, R. Evans, and M. Law, “Inductive general game playing,”
Machine Learning, vol. 109, pp. 1393–1434, 2020.

[20] C. Hocquette, A. Niskanen, R. Morel, M. Järvisalo, and A. Cropper,
“Learning big logical rules by joining small rules,” 2024, arXiv preprint.

[21] C. Hocquette, A. Niskanen, M. Järvisalo, and A. Cropper, “Learning mdl
logic programs from noisy data,” in Proceedings of the AAAI Conference
on Artificial Intelligence (Vol. No. 9: 38, March 2024, pp. 10 553–10 561.

[22] R. Evans, M. Bošnjak, L. Buesing, K. Ellis, D. Pfau, P. Kohli, and
M. Sergot, “Making sense of raw input,” Artificial Intelligence, 2021.

[23] Y. Gu, Q. Liu, Z. Li, and K. Zhang, “Knowpc: Knowledge-driven
programmatic reinforcement learning for zero-shot coordination,” 2024,
arXiv preprint.

[24] M. Eberhardinger, J. Maucher, and S. Maghsudi, “Learning of generaliz-
able and interpretable knowledge in grid-based reinforcement learning
environments,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (Vol. No. 1: 19,
October 2023, pp. 203–214.

[25] D. S. Aleixo and L. H. Lelis, “Show me the way! bilevel search
for synthesizing programmatic strategies,” in Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. No. 4: 37, June 2023, pp.
4991–4998.

[26] R. O. Moraes, D. S. Aleixo, L. N. Ferreira, and L. H. Lelis, “Choosing
well your opponents: how to guide the synthesis of programmatic
strategies,” in Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, August 2023, pp. 4847–4854.

[27] R. O. Moraes and L. H. Lelis, “Searching for programmatic policies in
semantic spaces,” 2024, arXiv preprint.

[28] Q. A. Sadmine, H. Baier, and L. Lelis, “Language models speed up
local search for finding programmatic policies,” Transactions on Machine
Learning Research, 2024.

[29] D. Robilliard and C. Fonlupt, “Towards human-competitive game playing
for complex board games with genetic programming,” in Artificial
Evolution: 12th International Conference, Evolution Artificielle, EA 2015,
Lyon, France, October 26-28, 2015, 2016.

[30] N. R. Sturtevant and A. M. White, “Feature construction for reinforcement
learning in hearts,” in Computers and Games, H. J. van den Herik,
P. Ciancarini, and H. H. L. M. J. Donkers, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 122–134.

[31] G. Martinez-Arellano, R. Cant, and D. Woods, “Creating ai characters
for fighting games using genetic programming,” IEEE transactions on
computational intelligence and Ai in games, vol. 9, no. 4, 2016.

[32] S. E. Gaudl, “A genetic programming framework for 2d platform ai,”
2018, arXiv preprint.

[33] C. Olson, L. Wagner, and A. Dockhorn, “Evolutionary optimization of
baba is you agents,” in 2023 IEEE Congress on Evolutionary Computation
(CEC), 2023, pp. 1–8, (to be published).

[34] M. Eberhardinger, F. Rupp, J. Maucher, and S. Maghsudi, “Unveiling
the decision-making process in reinforcement learning with genetic
programming,” in Advances in Swarm Intelligence. Singapore: Springer
Nature Singapore, 2024, pp. 349–365.

[35] D. G. Wilson, S. Cussat-Blanc, H. Luga, and J. F. Miller, “Evolving
simple programs for playing atari games,” in Proceedings of the genetic
and evolutionary computation conference, July 2018, pp. 229–236.

[36] L. Wong, G. Grand, A. K. Lew, N. D. Goodman, V. K. Mansinghka,
J. Andreas, and J. B. Tenenbaum, “From word models to world models:
Translating from natural language to the probabilistic language of thought,”
2023, arXiv preprint.

[37] J. A. Fodor, The language of thought. Cambridge, MA: Harvard
university press, 1975, vol. 5.

[38] G. Grand, V. Pepe, J. Andreas, and J. Tenenbaum, “Loose lips sink
ships: Asking questions in battleship with language-informed program
sampling,” in Proceedings of the Annual Meeting of the Cognitive Science
Society (Vol. 46), December 2023.

[39] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Programmat-
ically interpretable reinforcement learning,” in International Conference
on Machine Learning. PMLR, July 2018, pp. 5045–5054.

[40] A. Verma, H. Le, Y. Yue, and S. Chaudhuri, “Imitation-projected
programmatic reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[41] R. Das, J. B. Tenenbaum, A. Solar-Lezama, and Z. Tavares, “Combining
functional and automata synthesis to discover causal reactive programs,”
in Proceedings of the ACM on Programming Languages, 7(POPL), 2023,
pp. 1628–1658.

[42] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and
A. Anandkumar, “Voyager: An open-ended embodied agent with large
language models,” Transactions on Machine Learning Research, 2024.

[43] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level reward
design via coding large language models,” in The Twelfth International
Conference on Learning Representations, 2024.

[44] N. van Stein and T. Bäck, “Llamea: A large language model evolu-
tionary algorithm for automatically generating metaheuristics,” IEEE
Transactions on Evolutionary Computation, 2024.

[45] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar,
E. Dupont, others, and A. Fawzi, “Mathematical discoveries from program
search with large language models,” Nature, vol. 625, pp. 468–475, 2024.

[46] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, Y. Yue
et al., “Neurosymbolic programming,” Foundations and Trends® in
Programming Languages, vol. 7, no. 3, pp. 158–243, 2021.

[47] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
others, and B. McGrew, “Gpt-4 technical report,” 2023, arXiv preprint.

[48] Anthropic, “The claude 3 model family: Opus, sonnet, haiku.”
[49] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer,

D. Vincent, Z. Pan, S. Wang et al., “Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context,” 2024, arXiv preprint.

[50] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
others, and R. Ganapathy, “The llama 3 herd of models,” 2024, arXiv
preprint.

[51] J. Wei, X. Wang, D. Schuurmans, M. Bosma, brian ichter, F. Xia, E. H.
Chi, Q. V. Le, and D. Zhou, “Chain of thought prompting elicits reasoning
in large language models,” in Advances in Neural Information Processing
Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.

[52] N. Shaker, J. Togelius, and M. J. Nelson, Procedural content generation
in games, 2016.

[53] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, others, and J. Togelius, “Procedural content generation via
machine learning (pcgml),” IEEE Transactions on Games, vol. 10, no. 3,
pp. 257–270, 2018.

[54] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in International conference on computers and games.
Springer, 2006, pp. 72–83.

[55] Y. Wu, S. Y. Min, S. Prabhumoye, Y. Bisk, R. Salakhutdinov, A. Azaria,
T. Mitchell, and Y. Li, “SPRING: Studying papers and reasoning to play
games,” in Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[56] N. Sturtevant, “An Analysis of UCT in Multiplayer Games,” ICGA
Journal, p. 14, 2008.

[57] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” Advances in neural information
processing systems, vol. 36, pp. 10 088–10 115, 2023.


