
Skill Depth in Tabletop Board Games
James Goodman, Diego Perez-Liebana, Simon Lucas

Game AI Research Group
Queen Mary University of London

james.goodman, diego.perez, simon.lucas@qmul.ac.uk

Abstract—There are well-established methods for rating the
relative skill of players such as Elo or TrueSkill ratings. This
is not the case for rating games by their relative difficulty, or
the level of ‘skill’ required to play them well. Previous work
has proposed skill-traces as an answer to this question, which
use data from games played between agents with progressively
higher computational budgets to estimate the difficulty of the
game (or skill-depth). We try to improve on previous work by
expanding the algorithmic space considered and that this can
radically change the ratings of some games. We then propose a
new parameterised model for the level of skill a game requires
and test this on a suite of multiplayer tabletop board games,
concluding that the parameters can be usefully interpreted and
provide a slightly better fit to human-estimates.

I. INTRODUCTION

It is hopefully not controversial to state that Chess is a game
of skill, that Tic-Tac-Toe has very little skill involved, and that
Snakes and Ladders has none, with the outcome dependent
purely on dice results unaffected by any player decision. ‘Skill’
here meaning that a player with better knowledge of the game
and rules, and/or able to think through the consequences of
different actions will win, on average, more games than a less
well endowed player.

Measuring the skill of a player in terms of their relative
win rate is widely accepted, and is the basis of Elo, TrueSkill
and other rating systems [1], [2]. How can we measure the
skill of a game rather than a player? One approach is to
see how performance in the game changes as we adjust the
computational capacity of agents. If a game has a level of skill
then increasing this capacity should increase win rate, score,
or other game-appropriate performance metric.

This idea is developed in Lantz et al. 2017. They consider
a skill ladder, conjecturing that a game can be quantified in
terms of its depth, or number of rungs on the ladder [3].
A game like Tic-Tac-Toe should have a short ladder, as a
beginner rapidly learns a few key heuristics and then plateaus,
with a guaranteed draw. Games like Chess or Go should have
very long skill ladders, as lifetimes of investment in learning
the game pay off with ever greater performance.

This work is inspired by this general approach, and builds
in particular on Browne 2022 [4]. This uses Monte Carlo Tree
Search (MCTS) with increasing budgets to estimate the skill
ladder of classic tabletop games in the Ai Ai framework [5].
We agree with the general principle and develop further some
of the specifics of implementation and interpretation:

1) Stochasticity and/or imperfect information in a game
changes the observed rewards of skill. A common design
goal is to introduce randomness so that even a novice
player has a chance of victory [6], [7]. In poker, and
many other card games, a player may have a sequence
of very lucky card deals and do well almost regardless
of underlying skill-level. This means that a ‘good’ player
may win only 60% of games against a ‘poor’ player, for
some fixed definitions of ‘good’ and ‘poor’. In determin-
istic games such as Chess, we expect a ‘good’ player to
win closer to 100% of games against a ‘poor’ player. Elo
will rate the ‘good’ player in the stochastic game lower
than in the deterministic game. Comparing skill-ladders
across games needs to account for this. Browne 2022
includes one stochastic game (Can’t Stop, also included
here), and no games with imperfect information.

2) The impact of the number of players. At a basic level
this requires the win rate to be adjusted for the number
of players in a game. We are also interested in how the
skill level of a game changes with the player count.

3) The space of measuring algorithm is important. Browne
2022 uses MCTS with a fixed set of standard parame-
terisations. However, if this vanilla MCTS is poor at a
particular game (as we show later to indeed be the case)
then the skill-estimate it produces will be poor. A better
estimate of the skill level can be obtained from a larger
algorithmic space, and tuning to the game in question.

4) Browne 2022 measures the win rate in 1000 games
against an opponent with half the computational budget
to give a direct ladder of 16ms vs 32ms, 32ms vs 64ms
and so on. This may not statistically distinguish skill
differences when the change in win rate is small. We
extend this to a grid, of 16ms vs 32ms, 16ms vs 64ms,
and so on for all pairwise budgets. A difference between
16ms and 32ms might not be statistically resolvable, but
that between 16ms and 64ms/128ms might be.

Our contributions are to extend the analysis of [4] to a set of
16 varied tabletop board games with imperfect information and
more than 2 players, and using a grid of data as just described.
We expand the algorithmic space from vanilla MCTS and
show how this improves the skill trace evaluation. Finally we
propose a three-parameter model of the depth of skill in a
game, fit this to the grid data and suggest how these parameters
can usefully be interpreted.979-8-3503-5067-8/24/$31.00 ©2024 IEEE

II. PREVIOUS WORK

A common feature in the literature is to quote the size of
the state space as a measure of the algorithmic challenge a
game presents. Thompson 2000 suggested a game’s strategic
‘depth can actually be measured by recording the results of
games and determining how many distinct “levels” there are:
if the players in class 1 all lose regularly to the players in
class 2, who lose to players in class 3, etc., up to class n, then
the value of n measures the depth of the game’ [8].

The idea of a skill ladder is introduced by [6] as a sequence
of skills or heuristics that a beginner at game starts to learn
in sequence. The more such skills, or ‘rungs’ on the ladder,
the deeper the game. Lantz et al. 2017 suggest constructing
the skill ladder using AI agents by determining the increase
in computational resource required to make progress towards
optimal performance [3]. One operationalisation of this is to
define a ‘rung’ as the difference in resource that leads to a fixed
change in performance, such as a 60% mean win rate over
a player at the previous, lower rung [5]. The computational
resource to be restricted is open. This approach has been used
in Yahtzee and single-player puzzle games with restrictions on
either the number of neurons in the hidden layer of a neural
network, or the length of training time of a policy through
reinforcement learning [9], [10]. The MCTS time budget has
been used in [4], [5].

An alternative view is that skill depth is in the eye of
the beholder and is dependent upon the agent playing the
game [11]. Different games require different skills, and the
ladder for a game that depends on deep planning, such as
Chess, may not be meaningfully comparable with a ladder for
a game like Poker that depends on probabilistic analysis and
social deception. A linked idea is to identify a subset of games
which best distinguish between different algorithms [12].
Given a set of algorithms/agents, each of which has a different
core skill, a ladder could be constructed for each skill to give
a more multidimensional perspective.

Outside of the ladder approach, the skill depth of a game
has also been measured by the average depths of action rules
generated from human play-traces [13]. This is dependent on
the skill of the players from whom the traces are acquired.
Relative Algorithm Performance Profiling [14] measures the
‘quality’ of a game by the range of performance of different
algorithms (in 1-player games). This is a relatively crude
metrics and very sensitive in practice to the performance of the
least-skilled, often random, agent. Single-player puzzle games
have also been analysed using relative entropy and defining
their difficulty by the number of bits of information needed to
guide a player to a solution [15].

Browne 2022 is the work on which we build most di-
rectly [4], and is now outlined in more detail. This modifies the
ladder approach to fit a curve to the results of games between
agents with different budget levels. He investigates 31 games
in the Ai Ai framework and proposes a Skill Trace estimate
for a game that has two components. Firstly a regression line
is fit to the relative win rates to predict y, the relative win rate

Fig. 1: Example of Skill Trace (ST) Ladders for three 2-player
games, using the technique of Browne 2022. Explanation in
Section II. A game has a high ST if the area under the line
is large, and the projected win rate at 2048ms (against an
opponent with 1024ms) is high.

of the next, untried, higher budget agent. This will be in [0,
1] with 0 being a 50% win rate in a 2-player game, and 1
being a 100% win rate. Secondly the win rates of the better
budget in each tournament are squared and averaged as an
approximation of the area under the curve, AUC. The Skill
Trace (ST) is given by:

ST = y + (1− y)AUC (1)

Together this ensures the Skill Trace of a game is in [0, 1].
An ST of 1 implies an agent with budget 2X will always win
100% of games against an opponent of budget X . A game
like Tic-Tac-Toe will have y = 0, as once the budget passes a
certain threshold all games will be drawn.

In Figure 1 Tic-Tac-Toe reaches this threshold in under
40ms of MCTS budget, Can’t Stop reaches this shortly after
1 second, and Sushi Go (if we extrapolate) at 2-4 seconds.
The contribution of AUC means the ST is not 0, and will be
larger the longer it takes to each this threshold. Tic-Tac-Toe
therefore has a lower ST than Can’t Stop, even though they
have the same projected y of about 2 seconds.

Browne 2022 then regress the ST calculated for each
game against the ‘Complexity’ rating of the games on
BoardGameGeek1 (BGG) as a surrogate for inherent game
skill-depth. This compiles the votes of thousands of hobbyist
gamers on a scale of 1 to 5, with 1 being the simplest possible
game and 5 being highly complex and involved. Tic-Tac-Toe
is rated at 1.29, Chess at 3.66. All the games analysed are 2-

1www.boardgamegeek.com

www.boardgamegeek.com

Parameter Values Default

K 0.01, 1.0, 100 1.0
ϵ 0.03, 0.1, 0.3 -
Selection UCT, UCB-Tuned, Regret Matching UCB
Rollout policy Random, MAST Random
MAST γ 0.0, 0.5 -
Rollout length 0, 3, 10, 30, 100, 300, 1000 1000
Tree type Standard, MultiTree, SelfOnly Standard
Heuristic WinOnly, WinPlus, Ordinal, Score, WinOnly

ScorePlus, Leader

TABLE I: MCTS Parameters that define the algorithmic space.

player games with perfect information. Some have stochastic
elements.

III. ALGORITHMIC SPACE

A single algorithm will not perform equally well in all
games. The No Free Lunch Theorem makes this point theo-
retically [16], and multiple results show this empirically with
even a single algorithm requiring much parameter-tuning to
the problem at hand. MCTS initially gained its foothold in
Game AI research with levels of success in Go not achieved
by minimax-search approaches; vice versa MCTS is poor at
Chess, for which minimax search works well [17].

We hypothesize that using a single set of algorithmic
settings in MCTS may lead to incorrect estimation of the skill
depth of a game. Using a wider space of possible algorithms
can select the correct tool for each game, and the scarce
computational resource is then allocated optimally.

More formally, if we have a space of algorithms, A, and a
game g, then each algorithm, a ∈ A, will have a different
performance, J , in g at any given resource level, b, i.e.
J = f(g, a, b), hopefully with this function f(·) being non-
decreasing in b. There is no a priori reason for the same a ∈ A
to be optimal at all budget levels and we define ‘optimal’
performance, Jopt for a game at a given budget to be:

Jopt(b, g) = max
a∈A

J(g, a, b) (2)

We seek to plot this Jopt for increasing b, and hence estimate
the skill depth of a game. Within the framework of anytime
algorithms, a budget constraint of computational budget per
decision is used. This is not the only possibility. The memory
usage during decision making could be another valid choice, or
if reinforcement learning were used then training time and/or
the number of parameters in the network would be more
natural choices. An anytime restriction keeps the comparison
to a single computational bottleneck without suggesting that
this is the only important or interesting one.

To measure the performance, J , the win rate of an agent a1
with budget b1 is compared against agent a2 with lower budget
b1
N . Note that a2 may be different to a1, with each being the
best point in A for their respective budgets. This is the same
approach as used in [4], in which N = 2, and |A| = 1. The
algorithmic space used is outlined below and in Table I.

• Selection is the tree selection policy used. UCT is the
standard UCB for Trees algorithm [18], UCB-Tuned and

Regret Matching use the selection rules of the same
names [19], [20].

• K is the exploration constant in the UCB equation
M(s, a) = Q(s, a) +K

√
2 logN(s)
n(s,a) . ϵ is used for Regret

Matching, and is the probability of taking a random
exploration action in the tree.

• Rollout policy is either to take Random actions, or use
Move-Average Sampling (MAST) to define a soft-max
rollout policy over the average values of previous rollouts
containing the action [21]. Rollout length is the number
of actions to take after leaving the tree. MAST γ is the
discount applied to the MAST action estimates from the
previous decision; 0.0 preserves no memory, while higher
values inherit action estimates from previous moves.

• Tree type is how players are modeled in the tree.
‘Standard’ uses the normal MCTS approach of modeling
all players in a single tree. ‘MultiTree’ has one tree for
each player [22], and ‘SelfOnly’ just models the player’s
own actions, with other players assumed to act randomly.

• Heuristic is the function used to value a terminal state,
or the state at the end of a rollout. These can give very
different ranges of values, and all values are scaled to a
range of [0, 1] by monitoring the min/max reward values
observed. This scaling ensures that the K values have
consistent interpretations.
– WinOnly returns +1/0.5/-1 for a Win/Draw/Loss re-

spectively, and 0 if the game is not over.
– Score returns the raw game score; ScorePlus adds a

+/-50% bonus for winning/losing.
– Leader returns the difference between the player’s

score and that of the best other player. A +/-50% bonus
is added for winning/losing [23].

IV. GAMES

The 16 games used are listed in Tables V. There is insuf-
ficient space to describe all of them in detail, and details are
available at www.BoardGameGeek.com, or tabletopgames.ai.
Three of the games (Connect 4, Dots And Boxes and Can’t
Stop) are in the corpus used in [4]. Five of the games are per-
fect information, the remainder are all imperfect information.

V. MODEL OF SKILL DEPTH

A few axioms are the starting point of our model for skill
depth in a game.

1) As a player’s skill improves, their win rate against fixed
opponents will go up.

2) Two players of equal skill will, a priori, win 50% of
games (counting a draw as half a win, and with players
playing from each position an equal number of times in
case of first-player advantage).

3) As the budget advantage over opponents tends to infinity,
player win rate will tend to a plateau level. This level may
be lower than 100% in games with stochasticity.

4) There will be diminishing returns from additional skill.
If doubling the skill/budget leads to an increase of X%

www.BoardGameGeek.com
tabletopgames.ai

in the win rate, then doubling it again will lead to an
increase of Y ≤ X%.

5) Ultimately a game may exhibit perfect play, in which an
agent with budget Ω is never (on average) beaten by a
player with budget Z > Ω. In Tic-Tac-Toe Ω is about
40ms based on Figure 1.

A first natural model is the logistic curve, shifted to the
origin, in Equation (3). This has two parameters M and r.

Sadj = M

(
1− 2

1 + erx

)
= M

(
1− 2

1 + er log2
B
b

)
(3)

Sadj is the adjusted win rate, with 0 meaning a 50:50 win
rate in a 2-player game, +1 meaning a 100% win rate and -1
a 100% loss rate. See Equation (5) later for adjustments for
more than 2 players.

x = log2
B
b ∈ R+, where B is the budget of the better

agent, and b that of the less good agent. Equation 3 is
monotonically increasing with B (Axiom 1). Log2 is used as x
then takes integer values given the budget increases by powers
of 2. For agents with equal budgets, B

b = 1, and Sadj = 0
(Axiom 2).

M is the maximum achievable performance (M ≤ 1.0)
which is approached asymptotically as x → ∞ (Axiom 3). M
will be 1 if sufficient additional budget will lead to a 100%
win rate. As discussed in the Introduction, with stochasticity
and imperfect information it is expected that M will be some
intermediate value between 0 and 1 for games in which a lucky
deal of cards can allow a weak player to win the occasional
game against a much better opponent.

r is a measure of the speed with which performance
increases towards M as the budget is increased (Axiom 4).
High r means a performance plateau is rapidly reached (high
diminishing returns, suggestive of a short skill ladder), low
r means progress is slow and performance keeps increasing
with budget (low diminishing returns, and a long skill ladder).

This model assumes that regardless of the starting point,
doubling the budget will give the same performance im-
provement in violation of Axiom 5. To cater for this a third
parameter, β, is added to given Equation (4). The change in
Equation (4) from (3) is highlighted in red.

Sadj =
M

1+ b
β

(
1− 2

1 + er log2
B
b

)
(4)

If r controls the rate of diminishing returns against a fixed
opponent, β can be thought of as the ‘second order’ effect.
Against a fixed poor opponent (low b) we reach a plateau of
M1, while against a better fixed opponent (high b) we can only
reach a plateau M2 < M1. Figure 2 illustrates the difference
that β makes as the quality of the opponent changes.

As β → ∞, Equation (4) simplifies to (3). A game with a
large β will have the same M for all b, and will not exhibit
diminishing returns. This can be interpreted as a game with
high skill depth where investing more cognitive resources
provides a consistent benefit with no threshold at which perfect
play is achieved. Low β is indicative of a game like Tic-Tac-
Toe in which perfect play is achieved at a low skill level.

Fig. 2: Example of theoretical fits for Model 1 (Equation 3,
top, M = 1, r = 1), and then Model 2 (Equation 4) high
beta (middle, β = 500) and low beta (bottom, β = 5). Model
1 assumes that an agent with budget 2x will beat an agent
with budget x by a fixed percentage for all x, and the line
of adjusted win rate to budget multiplier is the same for all
fixed opponents. Model 2 fulfils Axiom 5, and perfect play is
approached as x increases.

We hypothesize that the three parameters of a game from
fitting the data to Equations (3) and (4) will provide a
more nuanced characterisation of a game than ST alone. In
particular, a game with high skill depth should have a high β.

VI. METHODOLOGY

Parameter tuning runs find a good set of MCTS parameters
for each within the algorithmic space in Table I. Optimal
settings may vary both by player count and the computational
budget. NTBEA is used for parameter optimisation [24].

This gives a tuned set of parameter settings for each budget
and player count. For some games it was found that the same
agent was robustly best across all player counts and budgets,
while for others this varied. For each game a Skill Ladder is
constructed using the methodology in [4], from the win rates
of an agent with a budget of 2x against one with a budget of
x, for x ∈ 8, 16, 32, 64, 128, 256, 512ms. 1000 games are run
for each pairing, with player positions rotated, and the same
set of random seeds used.

In addition win rates of 4x versus x, 8x versus x, 8x versus
2x and so on are calculated. This adds additional experimental
time, as 28 tournaments are required instead of 7, but permits
a full grid to be constructed and provides better resolution
of differences in skill depth. This process was repeated twice.
Once using the tuned parameter settings specific to each game
(the ‘Tuned’ dataset), and once using the same default MCTS
parameter settings for all games (the ‘Classic’ dataset). The

default settings (in Table I) correspond to the settings used
in [4], with the exception that Open Loop Information Set
MCTS is used, with the state redeterminised at the root on
each iteration [25]. This is because most of the games have
imperfect information, which was not the case in [4]. All
experiments were run using the TAG research framework,
which allows the same algorithm to be applied to very different
games with useful data reporting [26].

Skill Traces are calculated for both Tuned and Classic
datasets. These are also rank regressed against the complexity
ratings of the games from BoardGameGeek (BGG) . A com-
parison of these shows how the increase in algorithmic space
is important, with results reported in Section VII-A.

For each game the theoretical models of Section V are then
fit to the Tuned dataset. This fit used the nlm function in
base R2. L2 regularisation (λ = 0.0001) was used on M ,
r and log β to impose a weak prior of low skill and a flat
skill ladder. This was found to be necessary as otherwise the
high noise in low-skill games could cause overfitting to the
parameters. The results are reported in Section VII-B.

A. Multiplayer adjustments

Adjustments are required for games with more than 2-
players to compare metrics across different player counts.
Firstly, for games with N-players the win rate of a single
agent with a budget of 2x is measured against N-1 agents
with a budget of x. This provides the raw data for the ladder
or grid. Secondly the observed win rate must be adjusted to
take account of the player count, as an agent with no skill
difference will be expected to win 50% of 2-player games,
33% of 3-player games etc.

If there are N players in a game, with a single higher budget
agent, and N-1 lower budget agents, then the expected win rate
is 1/N for the higher budget agent and (N-1)/N for the lower
budget agent. We standardise with Equation (5) so that these
two win rates are equal, and the difference between them is
0.0 if skill makes no difference, and 1.0 if the higher skill
agent wins all games.

We adjust the raw win rate of the better agent, praw, in an
N-player game as follows:

Sadj = praw ∗N − (1− praw) ∗
N

N − 1
(5)

This gives the desired E[Sadj] = 0 if skill has no impact, and
E[Sadj] = 1.0 if the better agent wins all games.

VII. RESULTS

A. Classic Skill Trace

Table V summarises the results for Skill Trace (ST) for
both Classic and Tuned datasets. Differences of more than x4
between the two datasets are highlighted in red. In all cases,
2-player games show a higher ST than 3-player versions of the
same game (and this reduces further for 4-Players, not reported
here). The Spearman rank correlations, ρ, of ST with BGG

2https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/nlm

Classic Tuned
Game BGG ST 2P ST 3P ST 2P ST 3P

Sushi Go 1.16 0.225 0.038 0.189 0.050
Dots + Boxes 1.59 0.644 0.277 0.353 0.012
Puerto Rico 3.27 - 0.219 - 0.070
Connect4 1.19 0.287 - 0.282 -
Dominion 2.35 0.330 0.046 0.288 0.219
Can’t Stop 1.15 0.096 0.014 0.028 0.003
Virus 1.06 0.125 0.048 0.000 0.008
Colt Express 1.83 0.108 0.039 0.009 0.001
Stratego 1.85 0.252 - 0.010 -
Catan 2.30 - 0.119 - 0.098
Poker 2.43 0.056 0.012 0.087 0.003
Love Letter 1.19 0.020 0.001 0.013 0.002
7 Wonders 2.32 - 0.012 - 0.006
Hearts 1.75 - 0.014 - 0.004
Diamant 1.11 0.001 0.000 0.002 0.000
Tic-Tac-Toe 1.29 0.000 - 0.000 -

Spearman ρ 0.27 0.21 0.36 0.42
p-value 0.40 0.50 0.24 0.16

TABLE II: Skill Trace (ST) for each game for 2/3 players. Not
all games support both. BG ∈ [1, 5] is the complexity rating
from www.boardgamegeek.com. The bottom row reports the
Spearman rank correlation of ST against BGG.

complexity (and associated p-values) are reported separately
for 2-player games and 3-player games. This is because, as is
clear in the table, the ST for one game can vary between the
two player counts.

Games with tuned parameters similar to the default settings
such as Connect4 and Tic-Tac-Toe unsurprisingly show the
same patterns in both. Others can look quite different, e.g.:

• 2P Virus is a moderate skill game (ST of 0.125) under the
Classic settings, but a very low-skill game under Tuned
settings (ST of 0.0). A similar collapse in estimated skill
occurs in 3P Dots and Boxes.

• 3P Dominion in contrast has an increased skill-level with
the Tuned settings (0.22 from 0.05 in Classic).

Virus is a simple family game with a strong ‘take that’
mechanic that players use to attack other players by playing
viral infection cards on their healthy organs. There is little
planning involved, and it has the lowest BGG complexity
rating of the games at 1.06 (in range 1 to 5). The low skill
rating ascribed by the Tuned parameter is much more in
line with this expectation than the Classic results. The main
differences in the Tuned parameter settings are that the rollout
length is very short and uses a score-based heuristic. This is
also true of Dots and Boxes. In both these games the change
of score 1-2 moves in the future reflects good play (damaging
an winning opponent in Virus; scoring a complete Box in Dots
and Boxes). Using the default MCTS setting of random rollout
to the end of the game leads to a high-variance reward which
needs many iterations to resolve the signal from the noise.
Using quicker, shorter iterations gives a low-variance (and, for
these games at least, reliable) signal that leads to much better
play at low budgets. In Virus this rapidly picks up the key
tactic of attacking the current winner while protecting one’s
own organs. In Dots and Boxes this short-term focus picks up

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/nlm
www.boardgamegeek.com

the key tactic of closing available 3-boxes, without creating
any for the opponent to exploit. In 3-Players this suffices,
while 2-Player Dots and Boxes has long-term strategy towards
the end-game, which accounts for the higher ST here in both
cases [27]. There is a qualitative difference between the 2- and
3-player games that is revealed with the Tuned dataset but not
the Classic one.

In these games, the default setting is in a poor region of
MCTS parameter space and the high ST arises because this
poor policy makes solid progress as computational budget is
increased. A small shift in MCTS parameter space gives a
better policy that with a 32ms budget can easily defeat a
Classic 1024ms agent. The agents rapidly reach the plateau
of perfect play, and the estimated ST correctly plummets.

Dominion is an example of a similar effect, but where this
increases the estimated ST. Dominion is an example of a
‘deceptive’ game in which scoring points early damages long-
term success [28]. The crucial parameter changes are reduced
randomness in rollouts with the use of MAST [21] and more
strategic opponent modelling with MultiTree MCTS [22].

The rank correlation to BGG complexity ratings using the
Tuned dataset is a little better than with the default Classic
dataset; ρ increases and the p-values decrease in all cases.
However this is still very poor, with p-values of 0.24 and
0.16. Recall that the target BGG complexity ratings are not
true skill-depths, but an independent proxy. The fact that Tic-
Tac-Toe is rated as 1.29, and 6th most complex of the 12 2-
player games in Table V feels unintuitive and is a cautionary
point against relying too heavily on the BGG ratings as a gold
standard.

Another problem is the clustering of ST results below 0.02.
This is due to the lower overall win rates in these mostly
stochastic games compared to those in [4]. The squaring of
the win rate makes the AUC component in (2) very small, and
there is random noise in y with the slope of the regression line
on just 7 points.

The results in this section show that expanding the al-
gorithmic space provides better ST estimates than a fixed
algorithm for some games. These results only use the ‘ladder’
data in line with the methodology of Browne 2022. The next
section considers how the broader grid data can provide more
information.

B. Model Fitting

Tables III and IV shows the parameters fit to each game.
This is only reported here for the Tuned parameter settings
based on the results in Section VII-A.

When constructing the model in Section V, M in Model
1 was defined to be the adjusted win rate achievable asymp-
totically as the computational budget increases. Hence values
above 1.0 are nonsensical, and yet Table III has several
examples where this is the case. These are twinned with low
r values, which defines the rate of increase towards M . The
low r means that the model fit only gets anywhere near M
well beyond 1024ms and hence the range of the data. In these
cases M is not usefully interpretable.

Game BGG ST Model 1 Model 2
M r M(8) r β

Sushi Go 1.16 0.189 0.89 0.56 0.86 0.59 2400
Dots + Boxes 1.59 0.353 1.0 1.1 0.99 1.3 510
Connect4 1.19 0.282 1.0 0.96 1.0 1.1 680
Dominion 2.35 0.288 1.0 1.2 1.0 1.7 200
Can’t Stop 1.15 0.028 2.0 0.14 0.68 1.4 6.8
Virus 1.06 0.000 0.06 0.04 0.03 1.1 0.80
Colt Express 1.83 0.009 1.5 0.13 0.49 0.99 14
Stratego 1.85 0.010 1.5 0.12 0.45 1.0 13
Poker 2.43 0.087 0.14 1.2 0.14 1.3 520
Love Letter 1.19 0.013 0.80 0.19 0.35 0.25 78
Diamant 1.11 0.002 0.78 0.08 0.17 1.4 2.2
Tic-Tac-Toe 1.29 0.000 0.17 0.10 0.05 0.59 0.90

Spearman’s ρ 0.36 - - - - 0.40
p-Value 0.24 - - - - 0.20

TABLE III: ST and new parameters for 2-Player games. M(8)
is reported for Model 2 instead of M, as this is interpretable
as the maximum adjustable win rate against an 8ms opponent.

Game BGG ST Model 1 Model 2
M r M(8) r β

Sushi Go 1.16 0.050 0.57 0.34 0.44 0.53 270
Dots + Boxes 1.59 0.012 0.35 0.08 0.13 0.32 2.3
Puerto Rico 3.27 0.070 0.53 0.90 0.52 1.3 180
Dominion 2.35 0.219 0.52 0.89 0.51 0.96 1400
Can’t Stop 1.15 0.003 1.0 0.11 0.28 1.1 6.3
Virus 1.06 0.008 0.14 0.11 0.05 0.59 1.5
Colt Express 1.83 0.001 1.0 0.10 0.29 0.60 22
Catan 2.30 0.098 0.70 0.31 0.66 0.33 2900
Poker 2.43 0.003 0.29 0.15 0.10 0.99 16
Love Letter 1.19 0.002 0.31 0.13 0.11 0.66 18
7 Wonders 2.32 0.006 0.62 0.25 0.35 0.70 60
Hearts 1.75 0.004 1.5 0.10 0.42 0.57 27
Diamant 1.11 0.000 0.35 0.08 0.09 0.78 2.1

Spearman’s ρ 0.42 - - - - 0.62
p-Value 0.16 - - - - 0.03

TABLE IV: ST and new parameters for 3-Player games.

Skill Trace Beta
Game BGG ST 2P ST 3P Beta 2P Beta 3P

Sushi Go 1.16 0.189 0.050 2400 270
Dots + Boxes 1.59 0.353 0.012 510 2.3
Puerto Rico 3.27 - 0.070 - 180
Connect4 1.19 0.282 - 680 -
Dominion 2.35 0.288 0.219 200 1400
Can’t Stop 1.15 0.028 0.003 6.8 6.3
Virus 1.06 0.000 0.008 0.8 1.5
Colt Express 1.83 0.009 0.001 14 22
Stratego 1.85 0.010 - 13 -
Catan 2.30 - 0.098 - 2900
Poker 2.43 0.087 0.003 520 16
Love Letter 1.19 0.013 0.002 78 18
7 Wonders 2.32 - 0.006 - 60
Hearts 1.75 - 0.004 - 27
Diamant 1.11 0.002 0.000 2.2 2.1
Tic-Tac-Toe 1.29 0.000 - 0.9 -

Spearman ρ 0.36 0.42 0.40 0.62
p-value 0.24 0.16 0.20 0.03

TABLE V: Skill Trace (ST) for each game for 2/3 players. Not
all games support both. BG ∈ [1, 5] is the complexity rating
from www.boardgamegeek.com. The bottom row reports the
Spearman rank correlation of ST against BGG.

www.boardgamegeek.com

Fig. 3: The empirical data for 2P Can’t Stop (top) and Sushi
Go (bottom) illustrate games with low and high β respectively.
Compare with the theoretical model in Figure 2.

Introducing the third parameter, β, in Model 2 removes
the problem, increasing r and moving M , and M(b), into
a reasonable range. The problem with Model 1 is that it tries
to fit the same M and r for all opponents and cannot adjust
for lower-skill games in which this pattern flattens out against
better opponents and perfect play is approached within the
available budget.

The example of 2-player Can’t Stop in Figure 3 illustrates
this. For each opponent from 8ms to 64ms this plots the win
rate of increasingly better agents (doubling, quadrupling etc.
the budget). By 64ms the opponent is playing a very good
game, and multiplying the budget by any given factor is much
less helpful than with a lower budget opponent. This is in line
with the low β of 6.8 - M(b), the upper performance limit,
decreases rapidly as the opponent (b) gets better.

Contrast this with 2-player Sushi Go in Figure 3. Here
the strength of the fixed opponent makes no change to the
impact of budget increases; doubling the budget always gives
the same increase in performance as represented by the very
high β. This is interpretable as Sushi Go is a game of high
skill as there is no sign of perfect play being approached. Can’t
Stop is a game of lower skill, with perfect play approached at
relatively low budgets. These plots of the empirical data are
good matches with the theoretical plots in Figure 2 for low
and high β games.

Sushi Go is a simple game has a BGG complexity rating
of only 1.16. This is difficult to reconcile with the high β in
Table III, and the relatively high ST in Table V. This may
indicate there are hidden depths to the game, or, more likely
in our opinion, that it is tractable to the increasing depth of
search of an MCTS algorithm with perfect card recall in a
way that is less interesting to target human players.

A third example of 3P Virus in Figure 4 shows an low-
skill stochastic game. The data has noisy fluctuations around
a close to 0% adjusted win rate. Without a small amount of
L2 regularisation when fitting the model parameters this can

Fig. 4: An example of a low skill game, 3P Virus. The adjusted
win rates fluctuate around 0% and ‘perfect play’.

lead to overfitting with arbitrarily large value for β and M .
One clear advantage of the model over ST is that M and

β in Model 2 help distinguish between the skill depth and
stochasticity of a game. Poker and Love Letter both have high
levels of uncertainty in the outcome due to the random shuffle
of a deck of cards; many games can be won by a weak player
who at least knows enough to exploit a good hand. This feature
of the game is encapsulated in a low M , and β can be high
if there is a consistent reward to higher skill even if M is
low. With ST these two effects are merged, and both games
have a low ST because the win rate can never approach 100%
as it can in more deterministic games. There remain some
inconsistencies in β in Tables III and IV, with the value of
3-player Poker being much smaller than 2-player Poker; but
this is a step in the right direction.

Rank correlation fits to the BGG ratings on β improve on
the Tuned ST in Section VII-A, with ρ values both increasing,
and corresponding p-values decreasing, especially for 3-player
games. The issues with noise for low levels of ST have been
largely addressed by fitting the three parameter model to 28
data-points, versus a 2-parameter model to 7 points. The issues
with BGG ratings as a proxy for skill-depth are unaffected.

VIII. CONCLUSION

We applied the Skill Trace (ST) methodology of [4] to a
new set of games with imperfect information and more than 2
players. Extending the algorithmic space beyond a single set
of default parameters by tuning for each game individually
makes a significant change in the rating of some games where
the defaults are in a poor area of parameter space for that
game. This does not however improve the overall match to
human estimates of game skill depth, using BGG complexity
ratings as a proxy.

We then constructed a three-parameter model based on 5
axioms of expected game outcomes with changing skill level.
This provides a slightly better match to human estimates and
helps to disentangle aspects of the skill of a game:

• The maximum win rate a good player can achieve against
a less skilled opponent (M). Games in which stochasticity
is important, such as the deal of cards in Hearts or Poker
are expected to have low M , while games with perfect
information such as Connect 4 should have M of one. A

low M does not mean a game has no skill depth, but that
a better player can only be detected over a large number
of games so that the stochastic effects balance out.

• The skill depth of the game (β). A small β indicates
a game with rapidly diminishing returns of additional
cognitive effort. We expect a game like Chess or Go
to have β → ∞, so doubling the computational effort
gives a constant improvement in performance against any
opponent. Separating this from M is helpful in games like
Poker which can have low M and high β.

• The rate at which we approach M (r). The larger r is, the
greater the impact of doubling the budget in performance
terms. A small r means there is a small difference in
performance for doubling the budget, and we need to
multiply by a much larger factor to see an improvement,
even if asymptotically the same M level will be reached.
This is less directly interpretable compared to β or M .

A key weakness in these metrics in that they are in the
context of MCTS, and just measure the effect of increasing the
computational resources in this specific algorithmic context.
MCTS does not seek to model the way a human plays a
game; and nor is it the best algorithm to play these games.
Counterfactual Regret Minimization (CFR) methods will likely
be better at Poker than the Information Set MCTS we use [29];
and in some perfect information games with shallow traps,
such as Dots and Boxes, minimax search may be better. Future
Work can expand this algorithmic space further, in particular
with counterfactual regret-based techniques. This may also
resolve the noted discrepancy on the lower β value for Poker
with 3 players compared to 2 players.

Restricting a different resource, for example a memory
limit on the number of expanded nodes, is also a natural
further step to see if this gives a different rating of the
games. What lies behind a high win rate, the important skills
of the player, may vary between games. Some games will
reward memory skills to recall cards played, others reward
cognitive/planning ability or psychological understanding of
other players (a form of opponent modelling). In many games
all of these, and more, are important, and a low level of
skill in one might be offset by a high-level in another. The
approach takes no account of intransitivities in game-play, as
another interesting characteristic of game skill-depth; nor can
it currently help distinguish between the relative importance of
memory/planning/bluffing/probabilistic understanding related
skills in a given game.

One interesting idea would be to build on the work of [12],
which used information-theoretic analysis to find a subset of
single-player GVGAI games that best distinguished between
different game-playing algorithms. Each of these games could
represent a different set of skills, and be used to distinguish
algorithms by the skills they are good at. The corresponding
algorithms could then be used to derive skill measurements
for games that disentangle the relative importance of these
different skills.

The methods here are inherently slower than the quick
methods in [4]. The main computational overhead is not the

calculation of the grid of values between agents instead of a
ladder, but the need to tune over the algorithmic space for
each game, budget and player count.

Despite these important caveats, this work improves on
previous measurement techniques and the models presented
provide new insight into the skill of different board games,
even if these do not always agree with human judgement.

ACKNOWLEDGMENT

This work was funded by the EPSRC CDT in Intelligent
Games and Game Intelligence (IGGI) EP/S022325/1. This re-
search utilised Queen Mary’s Apocrita HPC facility, supported
by QMUL Research-IT. http://doi.org/10.5281/zenodo.438045
For the purpose of open access, the author(s) has applied
a Creative Commons Attribution (CC BY) license to any
Accepted Manuscript version arising.

REFERENCES

[1] R. Herbrich, T. Minka, and T. Graepel, “TrueSkill™: a Bayesian skill
rating system,” in Advances in neural information processing systems,
2007, pp. 569–576.

[2] M. E. Glickman and A. C. Jones, “Rating the chess rating system,”
CHANCE-BERLIN THEN NEW YORK-, vol. 12, pp. 21–28, 1999,
publisher: SPRINGER INTERNATIONAL.

[3] F. Lantz, A. Isaksen, A. Jaffe, A. Nealen, and J. Togelius, “Depth in
strategic games,” in AAAI Workshops, 2017.

[4] C. Browne, “Quickly Detecting Skill Trace in Games,” in IEEE Con-
ference on Games (CoG), 2022.

[5] S. Tavener, “UCT Skill Ladders,” 2020. [Online]. Available: http:
//mrraow.com/uploads/AiAiReports/uct skill ladders.html

[6] G. S. Elias, R. Garfield, and K. R. Gutschera, Characteristics of games.
MIT Press, 2012.

[7] J. Schell, The Art of Game Design: A book of lenses. CRC press, 2008.
[8] J. M. Thompson, “Defining the abstract,” 2000. [Online]. Available:

http://jnsilva.ludicum.org/TJ/TJ1920/Defining the Abstract.pdf
[9] J. Glenn and R. Brunstad, “Automatic Playtesting for Yahtzee,” in 2020

IEEE Conference on Games (CoG). IEEE, 2020, pp. 760–763.
[10] R. Volkovas, M. Fairbank, J. R. Woodward, and S. Lucas, “Extracting

learning curves from puzzle games,” in 2019 11th Computer Science
and Electronic Engineering (CEEC). IEEE, 2019, pp. 150–155.

[11] M. Stephenson, D. Perez-Liebana, M. Nelson, A. Khalifa, and A. Zook,
“Game complexity vs strategic depth,” 2019, publisher: National Insti-
tute of Informatics, Japan.

[12] M. Stephenson, D. Anderson, A. Khalifa, J. Levine, J. Renz, J. Togelius,
and C. Salge, “A continuous information gain measure to find the most
discriminatory problems for ai benchmarking,” in 2020 IEEE Congress
on Evolutionary Computation (CEC), 2020.

[13] D. Apeldoorn and V. Volz, “Measuring strategic depth in games
using hierarchical knowledge bases,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG). New York,
NY, USA: IEEE, Aug. 2017, pp. 9–16. [Online]. Available:
http://ieeexplore.ieee.org/document/8080409/

[14] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General
video game evaluation using relative algorithm performance profiles,” in
European Conference on the Applications of Evolutionary Computation.
Springer, 2015, pp. 369–380.

[15] E. Y. C. Chen, A. White, and N. R. Sturtevant, “Entropy as a measure of
puzzle difficulty,” in Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, vol. 19, 2023, pp.
34–42, issue: 1.

[16] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE transactions on evolutionary computation, vol. 1,
no. 1, pp. 67–82, 1997.

[17] R. Ramanujan, A. Sabharwal, and B. Selman, “On Adversarial Search
Spaces and Sampling-Based Planning.” in ICAPS, vol. 10, 2010, pp.
242–245.

[18] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning. Springer, 2006, pp. 282–
293.

http://mrraow.com/uploads/AiAiReports/uct_skill_ladders.html
http://mrraow.com/uploads/AiAiReports/uct_skill_ladders.html
http://jnsilva.ludicum.org/TJ/TJ1920/Defining_the_Abstract.pdf
http://ieeexplore.ieee.org/document/8080409/

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[20] V. Lisy, “Alternative Selection Functions for Information Set Monte
Carlo Tree Search,” Acta Polytechnica, vol. 54, no. 5, pp. 333–340,
2014.

[21] Y. Bjornsson and H. Finnsson, “CadiaPlayer: A Simulation-Based
General Game Player,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 1, no. 1, pp. 4–15, Mar.
2009. [Online]. Available: http://ieeexplore.ieee.org/document/4804731/

[22] J. Goodman, D. Perez-Liebana, and S. Lucas, “MultiTree MCTS in
Tabletop Games,” in 2022 IEEE Conference on Games (CoG). IEEE,
2022, pp. 292–299.

[23] ——, “Following the Leader in Multiplayer Tabletop Games,” in Pro-
ceedings of the 18th International Conference on the Foundations of
Digital Games, 2023, pp. 1–11.

[24] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple
Bandit Evolutionary Algorithm for Game Agent Optimisation,”
in IEEE Congress on Evolutionary Computation (CEC), Rio de
Janeiro, Feb. 2018, arXiv: 1802.05991. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8477869

[25] P. I. Cowling, E. J. Powley, and D. Whitehouse, “Information Set Monte
Carlo Tree Search,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 4, no. 2, pp. 120–143, Jun. 2012. [Online].
Available: http://ieeexplore.ieee.org/document/6203567/

[26] R. D. Gaina, M. Balla, A. Dockhorn, R. Montoliu, and D. Perez-Liebana,
“TAG: A Tabletop Games Framework,” in Proceedings of the AIIDE
workshop on Experimental AI in Games, 2020.

[27] J. K. Barker and R. E. Korf, “Solving dots-and-boxes,” in Twenty-Sixth
AAAI Conference on Artificial Intelligence, 2012.

[28] D. Anderson, M. Stephenson, J. Togelius, C. Salge, J. Levine, and
J. Renz, “Deceptive games,” in International Conference on the Ap-
plications of Evolutionary Computation. Springer, 2018, pp. 376–391.

[29] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” in Advances in
neural information processing systems, 2008, pp. 1729–1736.

http://ieeexplore.ieee.org/document/4804731/
https://ieeexplore.ieee.org/abstract/document/8477869
https://ieeexplore.ieee.org/abstract/document/8477869
http://ieeexplore.ieee.org/document/6203567/

	Introduction
	Previous Work
	Algorithmic Space
	Games
	Model of skill depth
	Methodology
	Multiplayer adjustments

	Results
	Classic Skill Trace
	Model Fitting

	Conclusion
	References

