
TAG: Tabletop Games Framework

Setup and Introduction

Contents

1 Framework Description 2

2 Getting started 3

3 TAG Wiki and Documentation 4

4 Running the framework 4
4.1 Game . 4

4.1.1 Players . 4
4.1.2 Game parameters . 5
4.1.3 Run . 5

4.2 Frontend . 6

5 Game States and Forward Models 7
5.1 Game State . 7
5.2 Forward Model . 8

6 Actions and Components 9
6.1 Action . 9
6.2 Component . 10

7 Running The Framework (Advanced) 12

1

1 Framework Description

The Tabletop Games Framework (TAG)[2] promotes research into general AI in modern tabletop games, facili-
tating the implementation of new games and AI players, while providing analytics to capture the complexities
of the challenges proposed. The following definitions will help you understand the rest of this document:

We define an action as an independent unit of game logic that modifies a given game state towards a specific
effect (e.g. player draws a card; player moves their pawn). These actions are executed by the game players and
are subject to certain rules: units of game logic, part of a hierarchical structure (a game flow graph). Rules
dictate how a given game state is modified and control the flow through the game graph (for instance, checking
the end of game conditions and the turn order).

A turn order defines which player is due to take the next action, possibly handling player reactions forced
by actions or rules. At a higher level, games can be structured in phases, which are time frames where specific
rules apply and/or different actions are available for the players.

All tabletop games use components (game objects sharing certain properties), whose state is modified by
actions and rules during the game. TAG includes several predefined components to ease the development of new
games, such as tokens (a game piece of a particular type), dice (with N sides), cards, counters (with a numerical
value), grid and graph boards (with board nodes and edges). Components can also be grouped into collections:
an area groups components in a map structure in order to provide access to them using their unique IDs, while
a deck is an ordered collection with specific interactions available (e.g. shuffle, draw, etc.). Both areas and decks
are considered components themselves.

2

2 Getting started

TAG requires Java with minimum version 17. In order to get the framework installed and running, follow these
instructions:

1. Clone the following repository using git in a Unix or Windows terminal:

git clone https://github.com/GAIGResearch/TabletopGames

You can also download the repository or check it out with SVN. Alternatively, for cloning the repository
using a graphical user interface, you can try GitHub Desktop. Thereare also detailed instructions for
cloning a repository at
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository.

2. Set up your IDE to use the project. These instructions allow you to set it up with IntelliJ IDEA (recom-
mended), but you can also use any another IDE you feel more comfortable with.

(a) Open IntelliJ IDEA

(b) Select ’Create New Project’ ... ’from existing sources’

i. If you have a project already open, you’ll find this option in the ’File’ menu, ’Open’, etc.

ii. If you see the Welcome to IntelliJ IDEA window, press ’Ctrl’ + ’Shift’ + ’A’ and type “existing
sources” for this option to appear:

(c) Select, as project location, the ’TabletopGames’ folder downloaded or created on your local machine
through the previous step.

(d) Select the Maven framework for import. This process should automatically set up the environment
and add any project libraries:

(e) Click on ’Create’ (or ’Finish’; say ’yes’ to overwrite the project folder if prompted).

3. Alternatively, open the code directly in your IDE of choice, right-click the pom.xml file and setup the
project with the Maven framework. Make sure src/main/java is marked as sources root.

4. Verify that TAG can execute in the IDE:

(a) In the IDE, open the file src/main/java/core/Game.java (you can navigate files on the left panel
- click on Project if the folder hierarchy is not displayed).

(b) With Game.java open and visible, click on menu Run → Run ‘Game.java’, and click on the Game
class in the pop up window. Alternatively, right click the file Game.java and select the option Run

‘Game.main()’.

(c) It’ll take a few seconds for the project to be compiled and then it will run a game (likely ‘Pandemic’,
but it may be a different one depending on the state of the repository).

3

https://github.com/GAIGResearch/TabletopGames
https://desktop.github.com/
https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository

3 TAG Wiki and Documentation

The first step is to inform yourself about each game - how it works, what kind of objects and actions are available,
rules, etc. For this, you are recommended to first read the documentation about the framework (introduction,
game definition, framework structure, etc.) in the framework’s Wiki and descriptive paper:

http://www.tabletopgames.ai/wiki/

https://rdgain.github.io/assets/pdf/papers/gaina2020tag.pdf

The Wiki includes definitions of terminology to better understand the framework, and information on games
currently in the framework. The TAG wiki is generally a good place to find information about the framework,
though note that not everything may be most up to date - always double check your information.

Next, this document contains exercises for you to get familiarised with the framework. You are welcome to
attempt the exercises listed here in the order you prefer, although the suggestion is that you do them in order.

4 Running the framework

There are different ways to run the framework and play yourself against the built-in AIs. We’ll start with two
simple ones: core.Game.java and gui.Frontend.java.

4.1 Game

In the Game class (found in the core package), you’ll find the main method which can be run at the end of the
file. Here, you can customise the way you run games by modifying some of the code, or supplying different
program arguments:

Argument Default Other values
gameType Jaipur games.GameType enum values
useGUI true false, true

turnPause 0 positive Integer
seed System.currentTimeMillis() Long

Other setup steps are identified in the comments in this method:

4.1.1 Players

A few lines are used to initialise a list of players. This variable is a Java ArrayList data type, an ordered list.
It needs to contain Java objects representing the players that will take part in the game. All objects added to
this list need to extend the AbstractPlayer class. Multiple copies of the same player type can be added.

The size of the list will indicate the number of players for the game. If this doesn’t correspond with the
number of players accepted by the game being run, an error will occur. The easiest way to check the number
of players is in the class games.GameType.java. This class contains the descriptors of all the games in the
framework which can be run, including:

• The number of players they accept

• A list of categories the game belongs to

• A list of mechanics the game uses

• References to the classes which actually implement the game functionality.

The AI players which currently exist in the framework can be found in the players package, and the basic
ones can be instantiated for the players ArrayList as follows:

4

http://www.tabletopgames.ai/wiki/
https://rdgain.github.io/assets/pdf/papers/gaina2020tag.pdf

AI Player Java Construction Code Optional Constructor Arguments
FirstActionPlayer new FirstActionPlayer() -

Random new RandomPlayer () java.util.Random

OSLA new OSLAPlayer () java.util.Random

RMHC new RMHCPlayer() random seed or RMHCParams

MCTS new MCTSPlayer() random seed or MCTSParams

HumanGUIPlayer new HumanGUIPlayer(ac) -
HumanConsolePlayer new HumanConsolePlayer() -

A short description of these players is provided next (more details can be found in the Wiki at http:

//www.tabletopgames.ai/wiki/agents/implemented):

• FirstActionPlayer: always chooses the first action in the list of available action in a game state.

• Random: executes a random action at every step.

• OSLA: One Step Look Ahead. Looks one step into the future, by simulating the effect of all possible
actions in the current game state and picks the one leading to the best next state (according to game-
specific heuristic).

• RMHC: Random Mutation Hill Climber[3]. Uses the simplest evolutionary algorithm (1+1 evolutionary
strategy) to evolve a sequence of actions that leads to the best state 10 steps into the future, and picks
the first action in the sequence.

• MCTS: Monte Carlo Tree Search[1]. Incrementally builds a game tree by simulating the effect of different
actions starting from the current state up to 10 steps into the future, and picks the next immediate action
that statistically leads to a better future state.

• HumanGUIPlayer: allows a human to play in the Graphical User Interface (GUI).

• HumanConsolePlayer: allows a human to play via the console.

Most of these agents use heuristics to evaluate how good a game state is. These heuristics are most often
game-specific (each game state implements these, see Exercise 2), but can also be custom, which are found in
the package players.heuristics.

4.1.2 Game parameters

A path to a JSON file containing a specific parameter configuration for the game can be supplied within the
gameParams variable. Examples can be found in ‘data/pandemic/train/param-config-vx.json‘ files.

4.1.3 Run

The last step is to choose the run method for your game. The main one is runOne:

1 runOne(GameType.valueOf(gameType), gameParams , players , seed , false , null ,
useGUI ? ac : null , turnPause);

The arguments it takes are:

• Game to run: the data time of this argument is GameType, so you can check the class previously mentioned
for the possible values (i.e. games available in the framework).

• Game parameters: path to custom JSON parameter configuration file (if null, default values in the pa-
rameters class are used instead).

• Players: players to take part in the game, defined as previously detailed.

• Seed: random seed to use for the run.

• randomizeParameters: if true, the parameters of the game will be randomised (more on this next week!);
if false, the game will run with default parameters; keep it to false for now.

• listeners: game listeners can be attached to react to specific events or record data. More on this next
week!

• useGUI: If true, the action controller object is supplied, which receives player input for use with the
Graphical User Interface. Otherwise the game is run without visuals.

• Turn pause: time to pause between player turns (to slow down GUI runs).

Alternatively, a runMany method exists to run multiple games at once with the same set of players. This
method will take a list of games as the first argument, instead of just one. Check out the method definition in
the Game class for more information.

5

http://www.tabletopgames.ai/wiki/agents/implemented
http://www.tabletopgames.ai/wiki/agents/implemented

4.2 Frontend

The second way to run the framework is through the gui.Frontend.java class. When run, this class produces
a rough GUI which can be used to set different options and run games directly (without the need to modify any
code or set up program arguments):

• Number of players for the run.

• For each player, select the player type (including human player options). Optionally, you can modify the
player’s parameters.

• Game to be run. Optionally, you can modify the game’s parameters (if the game implements tunable
parameters - more on this next week!).

• Visuals can be toggled on or off.

• Set random seed.

• Set core parameters (including toggling partial observability and competition mode, setting display options
or modifying the frame rate).

• Play, pause, resume and stop game buttons.

Note: there may be resolution issues with running this option (which may prevent you from seeing all the
options or even running games at all. In this case, please revert to the first option of running the framework -
this frontend is a rough solution and still in experimental stages!

6

5 Game States and Forward Models

Two of the core classes implemented by all games in the framework are the game state and the forward
model. We will explore implementations of these for some of the games next.

5.1 Game State

All game states for all games extend from core.AbstractGameState, which provides a lot of basic functionality
and templates for further functionality (i.e. methods which can be implemented by subclasses).

A game state contains all information needed to describe the current state of the game, a moment in time:
components, other variables or groupings. It does not implement any game functionality, it is simply a con-
tainer class. Any functions implemented are simple accessor functions, to give wider access to the information
contained.

The state is going to be modified by the forward model (game rules) and player actions, which is where the
main functionality for a game is actually implemented.

The most important method on a game state is the copy method:

1 AbstractGameState _copy(int playerId)

This method has 2 purposes:

1. It creates deep copies of the game state: AI players can then make simulations within copies without
affecting game objects in the original state.

2. If the game is partially observable (some information is hidden from the players, e.g. cards in the hands
of opponents), this method should hide components not visible by the player passed as an argument to
this function. Note: this argument could be −1, in which case nothing in the state should be hidden!

Game Example: Exploding Kittens In ”Exploding Kittens”, 2 to 5 players try to avoid drawing an
Exploding Kitten card while collecting other useful cards. Each card gives a player access to unique actions to
modify the game-state, e.g. selecting the player taking a turn next and shuffling the deck. This game features
stochasticity, partial observability and a dynamic turn order with out-of-turn actions. The game state keeps
an action stack so that players have the chance to react to cards played by others using a Nope card. A
Nope card cancels the most recent effect, but can itself be cancelled by another Nope card. Full rules PDF:
https://www.fgbradleys.com/rules/rules2/ExplodingKittens-rules.pdf.

In the game state class, this game tracks the following:

• playerHandCards: List of (partial observable) deck of cards in hand for each player.

• drawPile: (Partial observable) deck of cards for drawing new cards.

7

https://www.fgbradleys.com/rules/rules2/ExplodingKittens-rules.pdf

• discardPile: Deck of cards for discarding played cards.

• actionStack: Stack of actions (which can be cancelled).

• playerGettingAFavor: ID of player currently getting a favour (to handle the reactive Favour action card).

• orderOfPlayerDeath: the order in which player dies (e.g. if player 1 dies first, then orderOfPlayerDeath[1]
= 1)

Required functions implemented:

• getAllComponents(): returns a list with all Components stored in the game state.

• copy(int playerId): deep copy of the game state. Further, if the state needs to be hidden for the given
player, all cards in players’ hands which are unknown to this player are moved to the draw pile. The
unknown components in the draw pile are then shuffled, then the opponents are dealt new cards to replace
those removed in the first step. This procedure ensures that, since the player doesn’t know what cards
the opponents hold in hand (or what cards are in the deck), those elements unknown are randomised.

• getHeuristicScore(int playerId): returns a heuristic score for the current game state, approximating
its value for the given player. This heuristic works by assessing the cards in the player’s hand (using hard-
coded values based on card types) and returns the average card value.

• getGameScore(int playerId): no score in this game, this method always returns 0.

• Equals and hashCode.

Other functions available:

• killPlayer(int playerID): marks a player as dead.

• toString(): prints out the game state to the console.

• Getters (public) and setters (protected) for the variables.

5.2 Forward Model

The forward model encompasses the rules of a game. A copy of this model (with a different random seed) is
given to all AI players, allowing them to make simulations of games in parallel to the real game being played,
following the same rules. All forward models extend from the core.AbstractForwardModel class (similar to
the game state, this provides functionality and templates for implementations of new games). New games are
recommended to extend from the core.StandardForwardModel class instead, which oversees framework re-
quirements and exposes an interface more easily handled by new games.

The functionality is split across several important functions:

1 void _setup(AbstractGameState state)
2 List <AbstractAction > _computeAvailableActions(AbstractGameState gameState)
3 void _beforeAction(AbstractGameState state , AbstractAction action)
4 void _afterAction(AbstractGameState state , AbstractAction action)

In detail, these methods take care of specific functionality:

• Setup: sets up the game state passed as an argument to be the initial state of the game (e.g. creating
new decks, loading data, dealing starting hands to players etc.).

• Compute Available Actions: returns a list of all actions available in the game state passed as an
argument, for the next player to pick from.

• Before/After action: applies the main game rules when player decisions are taken. Here, games apply
any other required game rules or events not included in action effects, check for turn/round/game end and
adjust game state variables appropriately.

Game Example: Tic Tac Toe 2 players alternate placing their symbol in a N × N grid until one player
completes a line, column or diagonal and wins the game; if all cells in the grid get filled up without a winner,
the game is a draw. This is the simplest game included in the framework, meant to be used as a quick reference
for the minimum requirements to get a game up and running.

The forward model implements the required functions as follows:

8

• Setup: sets up the grid board, according to the size defined in the games parameters (more on this next
week).

• After action:

1. Checks for game end (a line filled with the same player’s symbol, or the grid filled with no winner),
and assigns game status and player result accordingly.

2. If the game has not ended, moves to the next player.

• Compute Available Actions: actions in this game are to place the player’s symbol in an empty cell on
the grid, so a list of all such actions is returned for the next player to choose from.

6 Actions and Components

Two other core elements required for a game are: actions, for players to be able to interact with the game, and
components, which make up the game state and are modified by actions and other game rules (applied by the
forward model). We will explore some key aspects of these next.

6.1 Action

Actions are things the players can do in the game (e.g. move a pawn, play a card, roll a die). In general, in
tabletop game rules descriptions, these are usually listed under a special category for player actions as well. All
actions extend from the AbstractAction class.

The functionality for actions is split across several important functions, similar to the forward model:

• Execute: changes the given game state by applying the effect of the action in the game (e.g. change the
position of the current player’s pawn from one square on the board to another).

• Copy: returns an exact (deep) copy of the action.

• Equals and HashCode: required for action comparisons (the HashCode function always returns an
integer unique to the object, given its current state).

When writing Actions, there is one important aspect to keep in mind:

• No references: there should be no references stored in the action classes (unless you are absolutely
certain they are immutable). Due to the fact that game state copies are created often for simulations,
object references will not point to the correct objects in all the copies. If component references are required,
you can store the component ID in the action class instead, and then retrieve the correct object instance
from the given game state using the getComponentByID method.

Complex actions (e.g. multi-step actions that require several decisions to be taken) can be implemented
via the Extended Sequence framework. You can find more information on this in the Wiki: http://www.

tabletopgames.ai/wiki/games/creating/actions_and_rules.

Core actions available in the framework:

Action Effect
DoNothing does nothing (equivalent to ”pass”)
DrawCard moves a card from one deck to another (given by component ID),

specifying the card’s source and destination index
DrawComponents moves several components (given by IDs) from one deck to another

RearrangeDeckOfCards changes the order of cards in a deck
RemoveComponentFromDeck removes a component from a deck

ReplaceComponents move first n components from one deck to another, then draw the
same number of components to replace them

SetGridValueAction sets the value of a cell in a grid board (given by component ID)

Game Example: Love Letter In “Love Letter”, 2 to 4 players start the game with one card each, rep-
resenting a character, a value and a unique effect. A second card is drawn at the start of each turn, one of
which must be played afterwards. After the last card of the deck is drawn, the player with the highest val-
ued card wins the current round. Players can be eliminated throughout the round, and the round also ends

9

http://www.tabletopgames.ai/wiki/games/creating/actions_and_rules
http://www.tabletopgames.ai/wiki/games/creating/actions_and_rules

when only one player remains, who wins. A player wins the game after winning 5 rounds. Full rules PDF:
https://www.fgbradleys.com/rules/rules2/LoveLetter-rules.pdf

The actions implemented for this game are as follows:

• DrawCard: draws a card for the current player (used at the start of each turn).

• One action per card type in the game: Guard, Priest, Baron, Handmaid, Prince, King, Countess and
Princess - all have different effects when played, according to game rules. These actions will be available
to the players depending on the cards they hold in hand.

As an example, the PrincessAction class extends the core.actions.DrawCard class (using the default
functionality to discard the card once played), adding on top the effect of playing the Princess card, which
eliminates the player that played it (setting the status of this player in the given game state in the execute

function).

6.2 Component

Components are unit parts, concepts or objects of a game. All components extend the core.components.Component
class and they always call super constructor: this assigns a unique ID to each component in the game.

Important method: copy. Every component needs to be able to create a deep copy of itself. The copy needs
to have the same component ID (different objects across game state copies can be matched by this ID). It’s
generally good practice to not store object references here either, but since the copies are going to be deep and
keeping component IDs intact, this is not a strict requirement.

Core components available in the framework:

10

https://www.fgbradleys.com/rules/rules2/LoveLetter-rules.pdf

Component Definition
Component base class for all components
Counter used for counting; has a minimum, maximum and current value
Dice used to roll dice; has a number of sides, and stores the last value

rolled
Token used for game pieces that need to move around in physical space;

has a type
Card base class for cards

FrenchCard definition for French cards (with number/type and suite, i.e. dia-
monds, hearts, spades and clubs)

BoardNode defines a node in a graph board, with information about its neigh-
bours

GraphBoard a collection of board nodes
GridBoard a grid containing any other components

Area a map collection, mapping from component ID to component object
Deck a list collection of other components; typical methods for drawing,

shuffling etc.
PartialObservableDeck a deck where the components inside have different visibility settings

Game Example: Dominion “Dominion” is a deck-building game in which players start with basic cards,
and then buy cards with better values and abilities to add to their deck. It has the common structure of Euro-
games of first needing to build an ‘engine’, and then using that engine to get victory points. A short-sighted
strategy of buying victory points immediately will do very badly, against human players at least, and good
agents need to learn the virtues of delayed gratification. Full rules pdf: https://www.riograndegames.com/

wp-content/uploads/2016/09/Dominion-2nd-Edition-Rules.pdf.

This game has 2 different components implemented within which all instances are implemented:

• DominionCard: a card of a specific type (enumeration defined separately to reflect all card types in the
game. Each card type maps to actions which are applied when the card is played, similar to ”Love Letter”.
Each card type has several properties as well, which can be queried from the card itself (e.g. victory points,
cost, reactions required etc.).

• Gardens: a special type of card (extends DominionCard, with different rules for giving victory points.

11

https://www.riograndegames.com/wp-content/uploads/2016/09/Dominion-2nd-Edition-Rules.pdf
https://www.riograndegames.com/wp-content/uploads/2016/09/Dominion-2nd-Edition-Rules.pdf

7 Running The Framework (Advanced)

More detailed information from a run can be obtained by running the framework using the evaluation.RunGames
class. This class facilitates running it via command line, with program arguments from an IDE, or configurations
set up in JSON.

While runMany() allows you to quickly run several players in several games, the evaluation.RunGames class
provides a more convenient way to run a Round Robin Tournament between multiple AI players for a single
game, for N repetitions. This is useful to run multiple games and extract game metrics. You can specify:

• The game

• The number of players

• The directory containing a set of JSON files, one for each of the agents to be included in the tournament.
Details here: http://www.tabletopgames.ai/wiki/agents/agent_JSON.

• Whether to run in ‘exhaustive’ or ‘random’ mode. The former runs a number of games for every possible
player combination across every possible position. The latter runs a total number of games, randomising
the players (and their positions) in each - it is more tractable for larger numbers of players, and/or if each
game takes a long time to run.

• A set of Metrics to report interesting data on the games run. Details here: http://www.tabletopgames.
ai/wiki/running/IGameListener.

For full details on usage use the --help option on the command line (as described above, write “–help”
in the program arguments field in IntellijIDEA). You can also check here https://www.tabletopgames.ai/

wiki/running/ for instructions on the different parameters of this class. However, the easiest way to configure
a tournament is via a JSON configuration file. An example of the contents of such a file can be seen below:

1 {
2 "game" : "Connect4",
3 "nPlayers" : 2,
4 "mode" : "exhaustive",
5 "matchups" : 100,
6 "verbose" : false ,
7 "seed" : 740234
8 }

You can find more examples in the Github repository, under ‘json/experiments/’.

Each one of the lines above indicates one parameter for the round robin tournament. This includes the game,
the number of players in the game, the number of games to be played, etc. Note that these parameters can be
set via command line, but you can also modify the values in the JSON file. All these parameters take default
values if they’re not specified.

In order to run a tournament with the above configuration, you need to indicate, via arguments, the location
of the JSON file. For instance, if the above JSON is in the file json/experiments/rungames0.json, you must an
argument to the IDEA configuration (as seen in the previous section) like this:

1 config=json/experiments/rungames0.json

To facilitate analysing the output, we can add more parameters to the JSON file to configure how results are
presented. The next JSON adds 3 parameters that define a Listener and the directory for the tournament
output:

1 {
2 "game" : "Connect4",
3 "nPlayers" : 2,
4 "mode" : "exhaustive",

12

http://www.tabletopgames.ai/wiki/agents/agent_JSON
http://www.tabletopgames.ai/wiki/running/IGameListener
http://www.tabletopgames.ai/wiki/running/IGameListener
https://www.tabletopgames.ai/wiki/running/
https://www.tabletopgames.ai/wiki/running/

5 "matchups" : 100,
6 "verbose" : false ,
7 "seed" : 740234
8 "listener" : "json/listeners/basiclistener.json",
9 "destDir" : "outputdir",
10 "output" : "outputdir/Tournament.log",
11 }

The default set of agents will be used in this case. If you look at the code in RunGames, main() function, you’ll
find the following set of lines:

1 LinkedList <AbstractPlayer > agents = new LinkedList <>();
2 if (! runGames.config.get(playerDirectory).equals("")) {
3 agents.addAll(PlayerFactory.createPlayers ((String) runGames.config.get(

playerDirectory)));
4 } else {
5 /* 2. Default players HERE */
6 agents.add(new MCTSPlayer ());
7 agents.add(new BasicMCTSPlayer ());
8 agents.add(new RandomPlayer ());
9 agents.add(new RMHCPlayer ());
10 agents.add(new OSLAPlayer ());
11 }

Specifying agents by code is more verbose, prone to error and slower than using JSON. In order to specify the
agents via JSON, we only have to add another parameter to the file (playerDirectory):

1 {
2 "game" : "Connect4",
3 "nPlayers" : 2,
4 "mode" : "exhaustive",
5 "matchups" : 100,
6 "verbose" : false ,
7 "seed" : 740234 ,
8 "listener" : "json/listeners/basiclistener.json",
9 "destDir" : "outputdir",
10 "output" : "outputdir/Tournament.log",
11 "playerDirectory" : "tournamentPlayers"
12 }

Note that this is a player directory, not a JSON file. This is because we indicate each agent in a different JSON
file, and all are stored in the same directory. A full description of what to include in agent JSON configuration
files can be found here: http://www.tabletopgames.ai/wiki/agents/agent_JSON. Here are three examples
of agents that can be run in TAG (Random, First Action Player and One-Step Look Ahead). You can also find
these JSON files in the json/players directory.

1 {
2 "class" : "players.simple.RandomPlayer"
3 }

1 {
2 "class" : "players.simple.FirstActionPlayer"
3 }

1 {
2 "class":"players.simple.OSLAHeuristic",
3 "heuristic" : {
4 "class" : "players.heuristics.ScoreHeuristic",
5 "maxLoot" : 500,
6 "BULLET_CARDS" : -1.0,
7 "BULLETS_PLAYER" : 0.5,
8 "BULLETS_ENEMY" : 0.0,
9 "LOOT" : 0.5
10 }
11 }

13

http://www.tabletopgames.ai/wiki/agents/agent_JSON

References

[1] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Pérez Liébana, Spyridon Samothrakis, and Simon Colton. A Survey of Monte Carlo
Tree Search Methods. In IEEE Trans. on Computational Intelligence and AI in Games, volume 4, pages
1–43, 2014.

[2] Raluca D. Gaina, Martin Balla, Alexander Dockhorn, Raul Montoliu, and Diego Perez-Liebana. TAG: a
Tabletop Games Framework. In Proceedings of the AIIDE workshop on Experimental AI in Games, 2020.

[3] Raluca D. Gaina, Sam Devlin, Simon M Lucas, and Diego Perez-Liebana. Rolling Horizon Evolutionary
Algorithms for General Video Game Playing. IEEE Transactions on Games, 2021.

14

	Framework Description
	Getting started
	TAG Wiki and Documentation
	Running the framework
	Game
	Players
	Game parameters
	Run

	Frontend

	Game States and Forward Models
	Game State
	Forward Model

	Actions and Components
	Action
	Component

	Running The Framework (Advanced)

